[1]Ramzan S,Rasool T,Bhat R A,et al.Agricultural soils a trigger to nitrous oxide:a persuasive greenhouse gas and its management[J].Environmental Monitoring and Assessment,2020,192 (7):1-21.
[2]Schwen A,Jeitler E,Bottcher J.Spatial and temporal variability ofsoil gas diffusivity,its scaling and relevance for soil respiration un-der different tillage [J].Geoderma,2015,259:323-336.
[3]Xu W,Cai Y P,Yang Z F,et al.Microbial nitrification,denitri-fication and respiration in the leached cinnamon soil of the upper ba-sin of Miyun Reservoir [J].Scientific Reports,2017,7 (1):1-12.
[4]Wang C,Lai D Y F,Sardans J,et al.Factors related with CH4and N2O emissions from a paddy field:clues for management implications[J].Plos0ne,2017,12(1):e0169254.
[5]Bardgett R D,Freeman C,Ostle N J.Microbial contributions toclimate change through carbon cycle feedbacks J].Isme Joural,2008,2(8):805-814.
[6]Eberwein J R,Oikawa P Y,Allsman L A,et al.Carbon availability regulates soil respiration response to nitrogen and temperature[J].Soil Biology Biochemistry,2015,88:158-164.
[7]Jiang Q J,Qi Z M,Xue LL,et al.Assessing climate change impacts on greenhouse gas emissions,N losses in drainage and cropproduction in a subsurface drained field J].Science of the TotalEnvironment,2020,705:135969.
[8]Moss R H,Edmonds J A,Hibbard K A,et al.The next genera-tion of scenarios for climate change research and assessment [J].Nature,2010,463(7282):747-756.
[9]Hanson P J,Edwards N T,Garten C T,et al.Separating root andsoil microbial contributions to soil respiration:a review of methodsand observations [J ]Biogeochemistry,2000,48 (1):115-146.
[10]Holgerson M A,Raymond P A.Large contribution to inland waterCO2 and CH4 emissions from very small ponds [J].Nature Geosci-ence,2016,9(3):222-226.
[11]Purnamasari E,Sudarno S.Analysis of greenhouse gas reductionby using organic fertilizer in boyolali regency [J].E3S Web ofConferences,2018,73.
[12]Oertel C,Matschullat J,Zurba K,et al.Greenhouse gas emissions from soilsa review [J].Geochemistry,2016,76 (3):327-352.
[13]Hu H W,Chen D,He JZ.Microbial regulation of terrestrial nitrous oxide formation:understanding the biological pathways forprediction of emission rates [J].Fems microbiology Reviews,2015,39(5):729-749.
[14]Dutaur L,Verchot L V.A global inventory of the soil CH4 sink[J].Global Biogeochemical Cycles,2007,21 (4).
[15]Deng Q,Hui D F,Wang J M,et al.Assessing the impacts oftillage and fertilization management on nitrous oxide emissions in acornfield using the DNDC model [J].Journal of Geophysical Re-search:Biogeosciences,2016,121 (2):337-349.
[16]Van G J W,Velthof G 1,Oenema 0,et al.Towards an agronom-ic assessment of N2O emissions:a case study for arable crops [J].European Joumal of Soil Science,2010,61 (6):903-913.
[17]Volder A,Briske DD,Tjoelker M G.Climate warming and pre-cipitation redistribution modify tree-grass interactions and tree species establishment in a warm-temperate savanna J].GlobalChange Biology,2013,19(3):843-857.
[18]Kettunen R,Saamio S,Martikainen P,et al.Elevated CO2concentration and nitrogen fertilisation effects on N2O and CHa fluxes and biomass production of phleum pratense on farmed peat soil [J].Soil Biology and Biochemistry,2005,37 (4):739-750.
[19]Nie T Z,Zhang Z X,Qi Z J,et al.Characterizing spatiotemporal dynamics of CH4 fluxes from rice paddies of cold region in Heilongjiang Province under climate change [J].International Journalof Environmental Research and Public Health,2019,16 (5):692.
[20]Wieder W R,Cleveland CC,Smith W K,et al.Future productivity and carbon storage limited by terrestrial nutrient availability[J].Nature Geoscience,2015,8 (6):441-444.
[21]Wang ZZ,Qi Z M,Xue LL,et al.Modeling the impacts of climate change on nitrogen losses and crop yield in a subsurfacedrained field [J].Climatic Change,2015,129 (1):323-335.
[22]He W T,Yang J Y,Drury C F,et al.Estimating the impacts of climate change on crop yields and N2O emissions for conventional and no-tillage in Southwestern Ontario,Canada [J].Agricultural Systems,2018,159:187-198.
[23]Yu Y X,Tao H,Jia H T,et al.Impact of plastic mulching onnitrous oxide emissions in China's arid agricultural region underclimate change conditions [J].Atmospheric Environment,2017,158:76-84.
[24]Minamikawa K,Fumoto T,lizumi T,et al.Prediction of futuremethane emission from irrigated rice paddies in central Thailandunder different water management practices [J].Science of theTotal Environment,2016,566:641-651.
[25]Rafique R,Kumar S,Luo Y Q,et al.Estimation of greenhousegases (N20,CH4 and CO2)from no-till cropland under in-creased temperature and altered precipitation regime:a DAYCENTmodel approach [J].Global and Planetary Change,2014,118:106-114.
[26]Fang Q X,Ma L,Halvorson A D,et al.Evaluating four nitrousoxide emission algorithms in response to N rate on an irrigated cornfield [J].Environmental Modelling Software,2015,72:56-70.
[27]Gillette K,Ma L W,Malone R W,et al.Simulating N2O emis-sions under different tillage com using RZ-SHA W model systems of irrigated [J].Soil Tillage Research,2017,165:268-278. |