农业与技术 ›› 2025, Vol. 45 ›› Issue (2): 7-11.DOI: 10.19754/j.nyyjs.20250130002
• 农业科学 • 上一篇
佟斌 吴强 李喆 庞佳颖 李海波 张云学
出版日期:
2025-01-30
发布日期:
2025-01-30
作者简介:
佟斌(1996-),女,硕士,助理农艺师。研究方向:作物推广:通讯作者张云学(1967-),男,本科,正高级工程师。研究
方向:农作物新品种引进、培育、示范推广。
基金资助:
Online:
2025-01-30
Published:
2025-01-30
摘要: microRNAs(miRNAs)是植物基因调控机制中不可或缺的组成部分。大豆是一种具有巨大商业潜力的作 物。采用高通量测序技术和生物信息学方法,对大豆中的mRNA进行识别和功能研究。研究表明,miRNAs在大 豆的生长发育和胁迫响应中扮演着关键角色。本文系统识别并深入探讨了大豆miRNAs在生长发育及多种胁迫条 件下的调控机制,综述了当前关于大豆RNAs在生物胁迫(如大豆疫露菌、胞囊线虫感染)及非生物胁迫(如 干旱、盐度、低温、重金属、营养缺乏等)中的调控作用与最新研究进展,旨在为相关领域的研究提供理论支撑 与方向指引。
中图分类号:
. miRNA在大豆生长发育及逆境响应中的调控作用[J]. 农业与技术, 2025, 45(2): 7-11.
[1]Zhan J,Meyers B C.Plant Small RNAs:Their Biogenesis,Regu- latory Roles,and Functions[J.Annu Rev Plant Biol,2023, 74:21-51. [2]Li M,Yu B.Recent advances in the regulation of plant miRNA bi- ogenesis [J].RNA biology,2021,18 (12):2087-2096. [3]Yu Y,Jia T,Chen X.The 'how'and where'of plant mi- croRNAs [J].New Phytol,2017,216 (4):1002-1017. [4]李波娣,何平安,许志豪,等.MR159调节植物生长发育和 逆境胁迫的研究进展[J].嘉应学院学报,2018,36(08): 63-70. [5]Baumberger N,Baulcombe D C.Arabidopsis ARGONAUTE1 is an RNA Slicer that selectively recruits microRNAs and short interfering RNAs [J].Proc Natl Acad Sci U S A,2005,102 (33)11928 -11933. [6]牛展阳.通过转R394获得高番茄红素工程番茄的研究 [D].咸阳:西北农林科技大学,2021. [7]汤冬,张国森,赵晓芳。基于二代测序技术的转录组测序生物 信息分析[J].河南大学学报(医学版),2019,38(01):67 -76. [8]Pel H J,Rozenfeld S,Bolotin Fukuhara M.The nuclear Kluyveromyces lactis MRF1 gene encodes a mitochondrial class I peptide chain release factor that is important for cell viability [J].Curr Genet,.1996,30(1):19-28. [9]Padmanabhan M S,Ma S,Burch-Smith T M,et al.Novel posi- tive regulatory role for the SPL6 transcription factor in the N TIR-NB -LRR receptor-mediated plant innate immunity [J].PLoS Pathog, 2013,9(3):1003235. [10]Tyczewska A,Gracz J,Kuczynski J,et al.Deciphering the soy- bean molecular stress response via high-throughput approaches [J]. Acta Biochim Pol,2016,63 (4):631-643. 11]Sun Z,Su C,Yun J,et al.Genetic improvement of the shoot ar- chitecture and yield in soya bean plants via the manipulation of Gm- miR156b [J].Plant Biotechnol J,2019,17 (1)50-62. 12]Zhang M,Su H,Gresshoff P M,et al.Shoot-derived miR2111 controls legume root and nodule development [J].Plant Cell Envi- on,2021,44(5):1627-1641. 13]Yun J,Wang C,Zhang F,et al.A nitrogen fixing symbiosis- specific pathway required for legume flowering J].Sci Adv, 2023,9(2):1150. [14]Yu JY,Zhang Z G,Huang S Y,et al.Analysis of miRNAs Tar- geted Storage Regulatory Genes during Soybean Seed Development Based on Transcriptome Sequencing [J].Genes (Basel),2019, 10(6). [15]Ding X,Zhang H,Ruan H,et al.Exploration of miRNA-medi- ated fertility regulation network of cytoplasmic male sterility during flower bud development in soybean [J].Biotech,2019,9 (1): 22. [16]咎凯,季珊珊,陈亚光,等。大豆抗疫霉根腐病基因研究进 展[J].农业科技通讯,2019(10):206-211. [17]马玲.gma-miR1507a在大豆疫霉根腐病中的功能研究[D] 南京:南京农业大学,2019. [18 Cui X,Yan Q,Gan S,et al.Overexpression of gma miR1510a/b suppresses the expression of a NB-LRR domaingene and reduces resistance to Phytophthora sojae [J ]Gene,2017, 621:32-39. [19 Rambani A,Hu Y,Piya S,et al.Identification of Differentially Methylated miRNA Genes During Compatible andIncompatible Inter- actions Between Soybean and Soybean Cyst Nematode [J].Mol Plant Microbe Interact,2020,33 (11):1340-1352. [20]Feng Y,Qi N,Lei P,et al.Gma-miR408 Enhances Soybean Cyst Nematode Susceptibility by Suppressing ReactiveOxygen Species Accumulation [J].Int J Mol Sci,2022,23 (22). [21]张字,董国颂,张廷婷.木本植物miRNA研究进展[J].山 东农业科学,2023,55(08):167-173. [22]Kulcheski F R,De Oliveira L F,Molina L G,et al.Identifica- tion of novel soybean microRNAs involved in abiotic and bioticstress es [J].BMC Genomies,2011,12:307. [22]Li H,Dong Y,Yin H,et al.Characterization of the stress asso- ciated microRNAs in Glycine max by deepsequencing [J].BMC Plant Biol,2011,11:170. [24]Zheng Y,Hivrale V,Zhang X,et al.Small RNA profiles in soy- bean primary root tips under waterdeficit [J].BMC Syst Biol, 2016、10(5):126. 25 Li W,Wang T,Zhang Y,et al.Overexpression of soybean miR172e confers tolerance to water deficit and salt stress,but in- creases ABA sensitivity in transgenic Arabidopsis thaliana [J].J Exp Bot,2017,68(16):4727-4729. [26 Yu Y,Ni Z,Wang Y,et al.Overexpression of soybean miR169c confers increased drought stress sensitivity intransgenic Ar- abidopsis thaliana [J].Plant Sci,2019,285:68-78. [27]刘玲。海藻酸钠寡糖鍰解水稻幼苗氯化钠胁迫的生理机制 [D].湛江:广东海洋大学,2022. [28]Sahito Z A,Wang L,Sun Z,et al.The miR172c-NNC1 module modulates root plastic development in response to salt insoybean [J].BMC Plant Biol,2017,17(1):229. [29]Cadavid I C,Da F G,Margis R.HDAC inhibitor affects soybean miRNA482bd expression under salt and osmoticstress [J].J Plant Physiol,2020,253:153261. [30]Zhang S,Wang Y,Li K,et al.Identification of Cold-Respon- sive miRNAs and Their Target Genes inNitrogen-Fixing Nodules of Soybean[J].nt J Mol Sei,2014,15(8):13596-13614. [31]Xu S,Liu N,Mao W,et al.Identification of chilling-responsive microRNAs and their targets in vegetablesoybean Glycine max L. [J].Sci Rep,2016,6:26619. [32]Zeng Q Y,Yang C Y,Ma Q B,et al.Identification of wild soy- bean miRNAs and their target genes responsive toaluminum stress [J].BMC Plant Biol,2012,12:182. [33]Fang X,Zhao Y,Ma Q,et al.Identification and comparative a- nalysis of cadmium tolerance-associated miRNAsand their targets in two soybean genotypes [J].PLoS One,2013,8 (12):81471. [34]Huang S C,Lu G H,Tang C Y,et al.Identification and com- parative analysis of aluminum-induced microRNAs conferring plant tolerance to aluminum stress in soybean J ]Biologiaplantarum, 2018,62(1):97-108. [35]Gautrat P,Mortier V,Laffont C,et al.Unraveling new molecu- lar players involved in the autoregulation of nodulation inMedicago uncatula[J].JExp Bot,2019,70(4):1407-1417. [36]Xu H,Li Y,Zhang K,et al.miR169c-NFYA-C-ENOD40 modulates nitrogen inhibitory effects in soybeannodulation [J.New Phytol,2021,229(6):3377-3392. [37]Liu X,Chu S,Sun C,et al.Genome-wide identification of low phosphorus responsive microRNAs in two soybeangenotypes by high- throughput sequencing J].Funct Integr Genomics,2020,20 (6):825-838. |
[1] | . 国内施用硅肥对水稻产量影响的Mta分析[J]. 农业与技术, 2025, 45(2): 1-6. |
[2] | . 农田土水稻系统中硒与镉的相互关系研究[J]. 农业与技术, 2025, 45(1): 1-5. |
[3] | . 白城市草原发展情况分析[J]. 农业与技术, 2025, 45(1): 6-10. |
[4] | . 苹果果园农药残留及重金属情况监测[J]. 农业与技术, 2025, 45(1): 16-20. |
[5] | . 果蔬产品中甲基异柳磷残留测定新方法研究与应用[J]. 农业与技术, 2024, 44(24): 24-27. |
[6] | . 玉米大豆间作试验初步研究[J]. 农业与技术, 2024, 44(24): 33-36. |
[7] | . 蔓荆子植物成分及药理作用研究进展[J]. 农业与技术, 2024, 44(24): 43-47. |
[8] | . 油菜抗根肿病品种示范应用探究[J]. 农业与技术, 2024, 44(24): 86-89. |
[9] | . 解磷菌的筛选鉴定及其促生效果研究[J]. 农业与技术, 2024, 44(24): 108-112. |
[10] | . 科尔沁沙地菊科植物繁殖体特性比较研究[J]. 农业与技术, 2024, 44(23): 1-5. |
[11] | . 蜂糖李种植表现分析及评价[J]. 农业与技术, 2024, 44(23): 6-10. |
[12] | . 球孢白僵菌与印楝素混用对亚洲玉米螟的同增效作用[J]. 农业与技术, 2024, 44(23): 16-19. |
[13] | . 入侵植物南美蟛蜞菊对酸胁迫的响应研究[J]. 农业与技术, 2024, 44(23): 27-30. |
[14] | . 六盘水市水稻羊肚菌轮作高效栽培技术[J]. 农业与技术, 2024, 44(23): 46-49. |
[15] | . 优质高产粳稻新品种毕粳48产量及其主要经济性状稳定性分析[J]. 农业与技术, 2024, 44(22): 6-11. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||