| [1]Santosh B,Mounika K H,Simon S.In vivo evaluation of biore-
sources against late blight of potato causedby phytophthora infestans,
plant growth and yield of potato (Solanumtuberosum L.) [J]. Jour-
nalofPlant Pathology &Mierobiology,2021,12(10):1-5.
[2]张晓云,丛蓉,赵卫松,等.30亿CFU/g芽胞杆菌可湿性粉
剂的研制及其对马铃薯黄萎病和疮痴病的防治效果[J].农药
学学报,2023,25(01):140-149.
[3]徐进,朱杰华,杨艳丽,等.中国马铃薯病虫害发生情况与农
药使用现状[J].中国农业科学,2019,52(16):2800-2808.
[4]王喜刚,刘东川,郭成瑾,等.不同药剂对马铃薯晚疫病的田
间防治效果及安全性评价[J].安微农业科学,2025,53(04):
120-123.
[5]毛彦芝,孙贺光,李庆全,等.我国马铃薯晚疫病监测预警研
究进展[J].作物杂志,2025(01):10-14.
[6]何有军,毛辉.番茄无公害高产栽培及病虫害绿色防控技术
[J].世界热带农业信息,2022(12):6-7
[7]徐子凡,程科,袁雪梅,等.基于优化ResNet的人脸表情识
别[J].计算机与数字工程,2024,52(12):3491-3495,
3535.
[8] Yann L,Yoshua B,Ceoffrey H. Deep learning [J].Nature,
2015.521(7553):436-444.
[9]邵泽中,姚青,唐健,等.面向移动终端的农业害虫图像智能
识别系统的研究与开发[J].中国农业科学,2020,53(16):
3257-3268.
[10]Sgrensen R A,Rasmussen J,Nielsen J,et al.Thistle detection
using convolutional neural networks [C]. EFITA WCCA 2017
Conference,Montpellier Supagro,Montpellier,France,2017:
2-6.
[ 11] Dyrmann M,Karstoft H, Midtiby H S. Plant species classificatio-
nusing deepconvolutionalneuralnetwork [J].BiosystemsEngineer-
ing.2016,151:72-80.
[12] Christiansen P, Nielsen L N, Steen K A, et al. Deepanomaly:
Combiningbackgroundsubtractionanddeep leaming for detectingob-
staclesandanomaliesinanagriculturalfieldy.Sensors,2016
16(11):1904.
13]Rahnemoonfar M,Sheppard C.Deepcount:Fruitcounting base-
don deep simulatedlearning [J].Sensors,2017,17 (4):905.
[14]Mohanty S P,Hughes D P,Salathe M.Using deepleaming forim-
age-based plant disease detection [J].FrontiersinPlantScience,
2016,7:1419.
[15]Farooq A,Hu J,Jia X.Analysis of spectral bands and spatial
resolutions for weed classification via deep convolutionalneural net-
work J].IEEE Geoscience and RemoteSensingLetters,2018,
16(2):183-187.
[16]甄又陈,王佳字,王宁,等.基于改进ResN450的草原蝗虫
种类智能识别APP系统[J].中国农机化学报,2025,46(05):
68-78.
[17]Farman H,Ahmad J,Jan B,et al.EfficientNet based robust
recognition of peach plant diseases infieldimages [J].Computers,
Materials&Continua,2022,71 (1):2073-2089.
[18]Sandhya Devi R S,Vijay Kumar V R,Sivakumar P.EfficientNet
v2 model for plant disease classification and pest recognition [J].
Computer Systems Science and Engineering,2023,45 (2 )2249-2263
[I9]江顺,黄红星,莫里楠,等.基于改进AlexNet的岭南水稻虫
害识别方法研究[J].江苏农业科学,2023,51(23):187
-195.
[20]苏仕芳,乔焰,饶元.基于迁移学司的葡萄叶片病害识别及
移动端应用[J].农业工程学报,2021,37(10):127-134.
[21]丁士宁.基于ResNet50的水稻病虫害识别[J].现代信息科
技,2024,8(16):127-130,135.
[22]王泽钧,马凤英,张瑜,等.基于注意力机制和多尺度轻量
型网络的农作物病害识别[J].农业工程学报,2022,38
(S1):176-183.
[23]张净,李进,刘晓梅.基于多尺度注意力残差网络SA-Rs
N?t的农作物病害识别[J].软件导刊,2023,22(04):
148-155.
[24]He K M,Zhang X Y,Ren S Q,et al.Deep residual leaming for
image recognition [C].2016 IEEE Conference on Computer Vi-
sion and Patter Recognition CVPR).Las Vegas,NV,USA.
IEEE,2016:770-778.[25]刘艳如,吴晓红,何小海,等.基于改进ResNet50的岩心图
像分类研究[J].智能计算机与应用,2025,15(02):10-
16.
[26]Li L,Zhao Y.Tea disease identification based on ECA attention
mechanism ResNet50 network [J.Front.Plant Sci,2025,16:
1489655.
[27]辜瑞帆,李祥,任维民.基于RcsN50改进模型的图像分类
研究[J].现代电子技术,2023,46(04):107-112.
[28]Hu J,Shen L,Sun G.Squeeze-and-excitation networks C].
2018 IEEE/CVF Conference on Computer Vision and Pattern Rec-
ognition (CVPR).IEEE,2018:2011-2023.
[29]黄炬,孙晗,林博生,等.基于改进RCNe50残差网络的纤
维分类方法[J].西安工程大学学报,2022,36(04):19-
25.
[30]王圆,祝俊辉,周贤勇,等.基于改进ResNet模型的番茄叶
片病虫害识别[J].激光杂志,2024,45(05):209-214.
[25]刘艳如,吴晓红,何小海,等.基于改进ResNet50的岩心图
像分类研究[J].智能计算机与应用,2025,15(02):10-
16.
[26]Li L,Zhao Y.Tea disease identification based on ECA attention
mechanism ResNet50 network [J.Front.Plant Sci,2025,16:
1489655.
[27]辜瑞帆,李祥,任维民.基于RcsN50改进模型的图像分类
研究[J].现代电子技术,2023,46(04):107-112.
[28]Hu J,Shen L,Sun G.Squeeze-and-excitation networks C].
2018 IEEE/CVF Conference on Computer Vision and Pattern Rec-
ognition (CVPR).IEEE,2018:2011-2023.
[29]黄炬,孙晗,林博生,等.基于改进RCNe50残差网络的纤
维分类方法[J].西安工程大学学报,2022,36(04):19-
25.
[30]王圆,祝俊辉,周贤勇,等.基于改进ResNet模型的番茄叶
片病虫害识别[J].激光杂志,2024,45(05):209-214. |