[1]牛晗,伍希志,任桂芹,等.基于OTSU与CANNY算法的竹片缺陷图像检测[J].森林工程,2022,38(06):75-81.
[2]杨国,黄文静,朱洪前,等.自然环境下黄绿柑橘检测通用模型的构建[J].林业工程学报,2022,7(05):134-141.
[3]王磊磊,王斌,李东晓,等.基于改进YOLO5的菇房平菇目标检测与分类研究[J].农业工程学报,2023,39(17):163-171.
[4]彭炫,周建平,许燕,等.改进YOL05识别复杂环境下棉花顶芽[J].农业工程学报,2023,39(16):191-197.
[5]高明星,关雪峰,范井丽,等.基于改进YOLO5-DeepS(0RT算法的公路路面病害智能识别[J].森林工程,2023,39(05):161-174.
[6]Li Fe-Fei,Fergus,Perona,et al.A Bayesian approach to unsu-pervised one-shot learning of object categories [C].ProceedingsNinth IEEE Interational Conference on Computer Vision,Nice,France,2003:1134-1141.
[7]Dong X,Zheng L,Ma F,Yang Y,Meng D.Few-Example Ob-ject Detection with Model Communication J].IEEE Trans PatternAnal Mach Intell,2019,41(7):1641-1654.
[8]史燕燕,史殿习,乔子腾,等.小样本目标检测研究综述J].计算机学报,2023,46(08):1753-1780.
[9]李芳琳.面向小样本数据的分类与检测方法及应用研究[D].南京:南京邮电大学,2022.
[10]杨明欣,张耀光,刘涛。基于卷积神经网络的玉米病害小样本识别研究[J].中国生态农业学报(中英文),2020,28(12):1924-1931.
[11]李红光,王玉峰,杨丽春.基于元学习的小样本遥感图像目标检测[J/0L].北京航空航天大学学报,1-16[2023-12-10]htps:/doi.org/10.13700/j.bh.1001-5965.2022.0637.
[12]杜娟,杨钧植.基于迁移学习的小样本连接器缺陷检测方法[J].自动化与信息工程,2022,43(05):1-7.
[13]唐泽字,邹小虎,李鹏飞,等.基于迁移学习的小样本OFDM目标增强识别方法[J].上海交通大学学报,2022,56(12):1666-1674.
[14]黄友文,豆恒,肖贵光.融合分类校正与样本扩增的小样本目标检测[J/0L].计算机工程与应用,1-10[2023-12-10]http://kns.cnki.net/kcms/detail/11.2127.TP.20221104.1529.020.html.
[15]吴晗,张志龙,李楚为,等.小样本红外图像的样本扩增与目标检测算法[J].控制理论与应用,2021,38(09):1477-1485.
[16]马鹏,艳芳.基于深度迁移学习的小样本智能变电站电力设备部件检测[J].电网技术,2020,44(03):1148-1159.
[17]Pan S J,Yang Q.A Survey on Transfer Learing J].IEEETransactions on Knowledge and Data Engineering,2010 (10):1345-1359.
[18]Wang X,Huang T E,Darrell T,et al.Frustratingly simple few-shot object detection [J].ICML 20,2020,119:9919-9928.
[19]Yan X,Chen Z,Xu A,et al.Meta R-CNN:Towards GeneralSolver for Instance-level Low-shot Learning [J].CoRR,2019:9577-9586.
[20]Shaoqing R,Kaiming H,Ross G,et al.Faster R-CNN:To-wards Real-Time Object Detection with Region Proposal Networks.[J].IEEE transactions on pattern analysis and machine intelli-gence,2017,39(6):1137-1149. |