[]宋文凤。加强农业资源环境保护推进生态农业持续发展[J].
河北农机,2024(01):136-138.
[2]Suk-Ju H,Yunhyeok H,Sang-Yeon K,et al.Application of
Deep-Learing Methods to Bird Detection Using Unmanned Aerial
Vehicle Imagery J].Sensors Basel,Switzerland),2019,19
(7):1651-1651.
[3]Redmon J,Divvala K S,Girshick B R,et al.You Only Look
Once:Unified,Real-Time Object Detection [Z].
[4]Szegedy C,Liu W,Jia Y Q,et al.Going Deeper with Convolu-
tions [Z].
[5]
Redmon J,Farhadi A.YOL09000:Better,Faster,Stronger [Z].
[6]Redmon J,Farhadi A.YOLOv3:An Incremental Improvement
[Z].
[7]潘语豪,危疆树,曾令鹏.基于Y0L03的农田鸟类目标检测
算法[J].激光与光电子学进展,2022,59(02):510-518.
[8 Bochkovskiy A,Wang C Y,Liao H Y M.YOLOv4:Optimal
Speed and Accuracy of Object Detection [Z].
[9]Hiba A,Igor F,Z F Q,et al.A Temporal Boosted YOLO-Based
Model for Birds Detection around Wind Farms [J].Joumal of Ima-
gng,2021,7(11):227.
[10]吴恺,李黎,王嘉芃,等.基于改进YOLOv5的野外实景视
频水鸟检测方法[J].杭州师范大学学报(自然科学版),
2024,23(04):351-358.
[11]Li C,Li L,Jiang H,et al.YOLOv6:a single-stage object de-
tection framework for industrial applications EB/OL].https:/
axiv.0rg/bs/2209.02976.2023-12-15.
12]Vijayakumar A,Vairavasundaram S.YOLO-based Object Detec-
tion Models:A Review and its Applications [J].Multimedia
Tools and Applications,2024,83 (35):83535-83574.
13]Wang C Y,Bochkovskiy A,Liao H Y M.YOLOv7:Trainable
bag-of-freebies sets new state-of-the-art for real-time object de-
tectors [Z].
[14]Peiyuan J,Daji E,Fangyao L,et al.A Review of Yolo Algo-
rithm DevelopmentsJ.Procedia Computer Science,2022,
1991066-1991073.
[15]Varghese R,Sambath M.YOLOv8:A Novel Object Detection
Algorithm with Enhanced Performance and Robustness C.In-
temational Conference on Advances in Data Engineering and Intel-
ligent Computing Systems (ADICS),2024.
[16]王艳艳,崔金坡,薛然.基于改进YOL0v8模型的鸟类检测
识别方法[J].中国战路新兴产业,2024(27):29-31.
[17]Wang C,Yeh I,Liao H.YOLO9:Learing What You Want to
Learn Using Programmable Gradient InformationZ.
[18]Wang A,Chen H,Liu L,Chen K,Lin Z,Han J,Ding G.
YOLOv10:Real-Time End-to-End Object Detection [Z].
[19]Yeerjiang A,Wang Z,Huang X,et al.YOLOv1 to YOLOv10:
A Comprehensive Review of YOLO Variants and Their Application
in Medical Image Detection [J].Joumal of Artificial Intelligence
Practice,2024,7(3).
[20]Badgujar M C,Poulose A,Gan H.Agricultural object detection
with You Only Look Once YOLO)Algorithm:A bibliometric
and systematic literature review [J].Computers and Electronics
in Agriculture,2024.
[21]Wah C,Branson S,Welinder P,et al.The Caltech UCSD
Birds-200-2011 Dataset [J].califoria institute of technology,
2011.
[22]Hom G V,Aodha O M,Song Y,et al.The iNaturalist Species
Classification and Detection Dataset [C].IEEE/CVF Conference
on Computer Vision and Pattern Recognition CVPR).IEEE,
2018.
[23]Deng J,Dong W,Socher R,et al.ImageNet:A large-scale hi-
erarchical image database [J].Proc of IEEE Computer Vision
Patter Recognition,2009:248-255.
[24]Berg T,Liu J,Lee S W,et al.Birdsnap:Large-Scale Fine-
Grained Visual Categorization of Birds [C].IEEE Conference on
Computer Vision and Patter Recognition CVPR )IEEE,
2014.
[25]Wu Z,Zhang Y,Wang X,et al.Algorithm for detecting surface
defects in wind turbines based on a lightweight YOLO model [J].
Scientific Reports,2024,14 (1):24558.
[26]Yan Z,Hao L,Yang J,et al.Real-Time Underwater Fish De-
tection and Recognition Based on CBAM-YOLO Network with
Lightweight Design [J].Joumal of Marine Science and Engineer-
ing,2024,12(8):1302.
[27]Haimei L,Hongren G,Lin C,et al.Automated detection of air-
field pavement damages:an efficient light-weight algorithm [J].
Intemational Joural of Pavement Engineering,2023,24 (1).
[28]Zheng X,Zheng W,Xu C.A multi-modal fusion YOLO network
for traffic detection [J ]Computational Intelligence,2023,40
(2).
[29]Huayi Z,Fei J,Hongtao L.SSDA-YOLO:Semi-supervised do-
main adaptive YOLO for cross-domain object detection [J.Com-
puter Vision and Image Understanding,2023,229.
[30]Zhiqiang X,Xi C,Fengqian P.DD-YOLO:An object detection
method combining knowledge distillation and Differentiable Archi-
tecture Search [J].IET Computer Vision,2022,16 (5):418
-430.
[31]Yongjie X,Zhiyong J,Yuming L,et al.MAF-YOLO:Multi-
modal attention fusion based YOLO for pedestrian detection [J].
Infrared Physies and Technology,2021,118. |