[1]苏永中,赵哈林.土壤有机碳储量、影响因素及其环境效应的研究进展[J].中国沙漠,2002(03):19-27.
[2]Briones M J I,McNamara N P,Poskitt J,et al.Interactive bioticand abiotic regulators of soil carbon cycling:evidence from con-trolled climate experiments on peatland and boreal soils [J].GlobalChange Biolog,2014,20(9):2971-2982.
[3]Morgan C,Cappellazzi S,Liptzin D.Assessing Soil Health:SoilCarbon Cycling and Storage [J].Crops Soils,2020,53 (6):43-47.
[4]童庆禧,张兵,张立福。中国高光谱遥感的前沿进展[J].遥感学报,2016,20(05):689-707.
[5]祝元丽,王冬艳,张鹤,等.采用无人机载高分辨率光谱仪反演土壤有机碳含量[J].农业工程学报,2021,37(06):66-72
[6]国佳欣,朱青,赵小敏,等.不同土地利用类型下土壤有机碳含量的高光谱反演[J].应用生态学报,2020,31(03):863-871.
[7]王延仓,张兰,王欢,等.连续小波变换定量反演土壤有机质含量[J].光谱学与光谱分析,2018,38(11):3521-3527.
[8]Liu H,Zhang Y,Zhang B.Novel hyperspectral reflectance modelsfor estimating black-soil organic matter in Northeast China [J].Environmental monitoring and assessment,2009,154:147-154.
[9]肖艳,辛洪波,王斌,等.基于小波变换和连续投影算法的黑土有机质含量高光谱估测[J].国土资源遥感,2021,33(02):33-39.
[10]王璨,武新慧,李恋卿,等.卷积神经网络用于近红外光谱预测土壤含水率[J].光谱学与光谱分析,2018,38(01):36-41.
[11]Ai W,Chen G,Yue X,et al.Application of hyperspectral anddeep learning in fammland soil microplastic detection [J].Journalof Hazardous Materials,2023,445:130568.
[12]聂哲,李秀芬,吕家欣,等.东北典型黑土区表层土壤有机质含量高光谱反演研究[J].土壤通报,2019,50(06):1285-1293.
[13]钟亮,郭熙,国佳欣,等.基于不同卷积神经网络模型的红壤有机质高光谱估算[J].农业工程学报,2021,37(01):203-212.
[14]王海江,蒋天池,Yunger John A,等.基于支持向量机的土壤主要盐分离子高光谱反演模型[J].农业机械学报,2018,49(05):263-270.
[15]T6th G,Jones A,Montanarella L.The LUCAS topsoil databaseand derived information on the regional variability of cropland top-soil properties in the European Union [J].Environmental monito-ring and assessment,2013,185:7409-7425.
[16]李恒,张氢,秦仙蓉,等.基于短时傅里叶变换和卷积神经网络的轴承故障诊断方法[J].振动与冲击,2018,37(19):124-131.
[17]严来章.基于深度学习的预应力管道灌浆密实度检测[J].合肥工业大学学报(自然科学版),2023,46(09):1210-1216.
[18]Tsakiridis N L,Keramaris K D,Theocharis J B,et al.Simulta-neous prediction of soil properties from VNIR-SWIR spectra using alocalized multi-channel 1-D convolutional neural network[J].Geodema,2020,367:114208.
[19]沈润平,丁国香,魏国栓,等.基于人工神经网络的土壤有机质含量高光谱反演[J].土壤学报,2009,46(03):391-397. |