农业与技术 ›› 2024, Vol. 44 ›› Issue (13): 81-85.DOI: 10.19754/j.nyyjs.20240715019
• 资源环境 • 上一篇
刘杰 方毅 宋博恒 程金新
出版日期:
2024-07-15
发布日期:
2024-07-15
作者简介:
刘杰(1998-),男,硕士在读。研究方向:全细胞生物传感器与环境安全检测;通讯作者程金新(1975-),女,硕士,副教
授。研究方向:食药犯罪侦查技术,危化品应急洗消技术。
基金资助:
Online:
2024-07-15
Published:
2024-07-15
摘要: 工业化城镇化的快速发展加速了环境中重金属积累,重金属元素如镉、砷、铅、汞等对人体具有致命毒 性,会对健康造成严重影响。面对重金属污染日益严峻的挑战,传统的物理化学检测方法虽然精准但检测成本 高,操作复杂,难以适应环境监测高通量大范围的需求。全细胞生物传感器作为新型生物技术检测手段,在环境 监测中展现独特优势。本文通过介绍全细胞生物传感器的工作原理及类别,列举了其在重金属污染中的检测应 用,旨在阐明生物传感器在环境监测中的巨大潜力。
中图分类号:
. 基于全细胞生物传感器对环境中重金属污染检测的研究进展[J]. 农业与技术, 2024, 44(13): 81-85.
[1]Tauriainen S,Karp M,Chang W,et al.Luminescent bacterialsensor for cadmium and lead [J].Biosensors Bioelectronics,1998,13(9):931-938. [2]Changjiang L,Huan Y,Baocai Z,et al.Engineering whole-cellmicrobial biosensors:Design principles and applications in monito-ring and treatment of heavy metals and organic pollutants [J].Bio-technology advances,2022,60:108019. [3]E Gutierrez J,E Amaro F,E Martin-Gonzalez A.Heavy metalwhole-cell biosensors using eukaryotic microorganisms:an updatedcritical review [J].Frontiers in Microbiology,2015,648. [4]Zhang K,Liu M,Song X,et al.Application of Luminescent Bac-teria Bioassay in the Detection of Pollutants in Soil [J].Sustain-ability,2023,15(9). [5]Kotova Y V,Manukhov V I,Zavilgelskii B G.Lux-biosensors fordetection of SOS-response,heat shock,and oxidative stress [J].Applied biochemistry and microbiology,2010,46 (8):781-788. [6]He M Y,Lin Y J,Kao Y L,et al.Sensitive and Specific Cadmi-um Biosensor Developed by Reconfiguring Metal Transport and Le-veraging Natural Gene Repositories [J].ACS Sensors,2021,6(3):995-1002. [7]马玉冰.高灵敏度重金属镉离子全细胞生物传感器的构建及优化[D].天津:天津大学,2020. [8]Nucifora G,Chu L,Misra T K,et al.Cadmium resistance fromStaphylococcus aureus plasmid p1258 cadA gene results from a cad-mium-efflux ATPase [J].Proceedings of the National Academy ofSciences,1989,86(10):3544-3548. [9]S R S,K S D,Puja S,et al.Luminescence-based whole-cell-sensing systems for cadmium and lead using genetically engineeredbacteria [J].Analytical and bioanalytical chemistry,2003,376(1):11-17. [10]Kumar S,Verma N,Singh K A.Development of cadmium specif-ic recombinant biosensor and its application in milk samples [J].Sensors Actuators:B.Chemical,2017,240:248-254. [11]Ye C H,Yan G,Han L,et al.Differential Detection of Bio-available Mercury and Cadmium Based on a Robust Dual-SensingBacterial Biosensor [J].Frontiers in Microbiology,2022,13:846524. [12]Shen L,Chen Y,Hu L,et al.Development of a Highly Sensi-tive,Visual Platform for the Detection of Cadmium in ActualWastewater Based on Evolved Whole-Cell Biosensors J].ACSsensors,2024. [13]ShengYan C,Yan Z,Renjie L,et al.De Novo Design of the Ar-sR Regulated Psubars/sub Promoter Enables a Highly SensitiveWhole-Cell Biosensor for Arsenic Contamination [J].Analyticalchemistry,2022,94(20):7210-7218. [14]Cai J,Dubow M S.Use of a luminescent bacterial biosensor forbiomonitoring and characterization of arsenic toxicity of chromatedcopper arsenate (CCA)[J].Biodegradation,1997,8 (2):105-111. [15]陶诗频,陈东东,李顺兰,等。砷金细胞生物传感器的优化[J].环境科学学报,2023,43(04):400-407. [16]Pengsong L,Yumingzi W,Xin Y,et al.Development of a whole-cell biosensor based on an ArsR-Psubars/sub regulatory circuitfrom Geobacter sulfurreducens J].Environmental Science andEcotechnology,2021,6:100092. [17]Mahbub R K,Krishnan K,Naidu R,et al.Development of awhole cell biosensor for the detection of inorganic mercury J].Environmental Technology Innovation,2017,8:64-70. [18]Xinyi W,Francesca V,Ekaterina P,et al.Cascaded amplifyingcircuits enable ultrasensitive cellular sensors for toxic metals [J].Nature chemical biology,2019,15 (5):540-548. [19]Guo M,Chen X,Chen S,et al.Replacing manual operationwith bio-automation:A high-throughput evolution strategy to con-struct an integrated whole-cell biosensor for the simultaneous de-tection of methylmercury and mercury ions without manual sampledigestion J].Joumal of Hazardous Materials,2024,465:133492. [20]Liu P,Huang Q,Chen W.Construction and application of a zinc-specific biosensor for assessing the immobilization and bioavail-ability of zinc in different soils J ]Environmental Pollution,2012,164:66-72. [21]Xiaokai Z,Yi Z,Evrim E,et al.Whole-cell bioreporter appli-cation for rapid evaluation of hazardous metal bioavailability andtoxicity in bioprocess [J].Journal of hazardous materials,2024,461:132556. [22]Tsai S-T,Cheng W-J,Zhang Q-X,et al.Gold-Specific Bio-sensor for Monitoring Wastewater Using Genetically Engineered Cu-priavidus metallidurans CH34 J ]ACS Synthetic,2021,10(12):3576-3582. [23]Yangwon J,Yejin L,Yeonhong K,et al.Development of novelEscherichia coli cell-based biosensors to monitor Mn (II)in en-vironmental systems J].Frontiers in Microbiology,2022,13:1051926. [24]Bereza-Malcolm L,Aracic S,Franks A.Development and Ap-plication of a Synthetically-Derived Lead Biosensor Construct forUse in Gram-Negative Bacteria [J].Sensors,2016,16 (12):2174. [25]Lixin Z,Li Y,Chuanyong J.A Novel Whole-Cell Biosensor forBioavailable Antimonite in Water and Sediments J].Appliedand environmental microbiology,2023,89 (1):0181722. [26]Junning M,Yue G,Fuguo X,et al.Accurate and non-destruc-tive monitoring of mold contamination in foodstuffs based on whole-cell biosensor array coupling with machine-learning prediction models [J].Joural of Hazardous Materials,2023,449:131030. [27]Boris V,Junning M,Dorin H,et al.Genetically engineeredbacterial strains constructed as a whole-cell biosensor for specificvolatiles identification of infected potato tubers with a soft rot dis-ease [J].Sensors and Actuators:B.Chemical,2023,387:133788. [28]NaiXing Z,Yan G,Hui L,et al.Versatile artificial mer operonsin Escherichia coli towards whole cell biosensing and adsorption ofmercury[J].PloS one,2021,16(5):0252190. [29]Shivangi M,Deeksha S,Rajiv R.Genetic circuits in microbialbiosensors for heavy metal detection in soil and water [J].Bio-chemical and Biophysical Research Communications,2023,652131-652137. [30]Chang-ye H,Yan G,Chao-xian G,et al.A tailored indigoi-dine-based whole-cell biosensor for detecting toxic cadmium in en-vironmental water samples [J].Environmental Technology In-novation,2022,27:102511. |
[1] | . 松花江流域生态效应研究[J]. 农业与技术, 2024, 44(13): 77-80. |
[2] | . 恩施州城镇化与生态环境耦合关系研究[J]. 农业与技术, 2024, 44(12): 69-74. |
[3] | . 生物炭的制备与改性及其在环境治理中的应用进展[J]. 农业与技术, 2024, 44(12): 91-94. |
[4] | . 不同生态修复措施下非煤矿山废弃地土壤特性研究[J]. 农业与技术, 2024, 44(12): 95-98. |
[5] | . 基于GIS的土地整治适宜性分区研究[J]. 农业与技术, 2024, 44(12): 99-103. |
[6] | . 重庆市生态农场发展技术路径及对策建议[J]. 农业与技术, 2024, 44(12): 104-106. |
[7] | . 基于VORS模型的关中地区生态系统健康评价[J]. 农业与技术, 2024, 44(12): 107-111. |
[8] | . 河流流域范围划分规则探讨[J]. 农业与技术, 2024, 44(11): 70-76. |
[9] | . 基于GIS的广汉市乡村聚落空间格局演变及优化策略研究[J]. 农业与技术, 2024, 44(11): 77-82. |
[10] | . 基于ArcGIS的桂林会仙湿地公园生态敏感性评价[J]. 农业与技术, 2024, 44(11): 83-88. |
[11] | . 气相分子吸收光谱法测定水中氨氮的干扰和消除[J]. 农业与技术, 2024, 44(11): 89-92. |
[12] | . 清江上游流域水源涵养时空变化及驱动因子分析[J]. 农业与技术, 2024, 44(10): 62-67. |
[13] | . 近四百年乌兰察布地区乡村聚落格局演变研究[J]. 农业与技术, 2024, 44(10): 68-75. |
[14] | . 土地整治与农业碳排放减量[J]. 农业与技术, 2024, 44(10): 76-82. |
[15] | . 后三峡时代主要生态环境问题及其对策浅析[J]. 农业与技术, 2024, 44(10): 83-86. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||