
农业与技术 ›› 2025, Vol. 45 ›› Issue (23): 97-101.DOI: 10.19754/j.nyyjs.20251215018
• 资源环境 • 上一篇
赵明秋 翟洪凯 朱文博 姚颜莹 许培磊
出版日期:2025-12-15
发布日期:2025-12-15
作者简介:赵明秋(1993-),男,硕士,助理农艺师。研究方向:生态农业;通信作者许培磊(1984-),女,博士,研究员。研究方向:生态农业。
基金资助:Online:2025-12-15
Published:2025-12-15
摘要: 微塑料作为塑料废弃物经破碎、降解形成的颗粒物,广泛存在于水体、土壤及生物体内,已成为全球关注的重大环境问题,对生态系统健康和生物安全构成严重威胁。本文系统综述微塑料的来源、环境行为及其常见检测技术,重点分析当前主要检测方法的优势与局限性,并展望其污染监测与防治的未来研究方向。通过文献调研,梳理了微塑料检测技术的发展现状,详细总结了包括光学显微镜、扫描电子显微镜、傅里叶变换红外光谱、拉曼光谱、热分析技术、气相色谱 - 质谱联用及液相色谱 - 质谱联用等主流分析方法的原理、应用场景与存在的问题,同时对微检测过程中的关键技术难点进行了归纳。在此基础上,本文对当前研究提出展望与建议,以期为微塑料污染防控与治理技术的进一步发展提供理论依据。
中图分类号:
. 微塑料检测与分析技术的研究进展[J]. 农业与技术, 2025, 45(23): 97-101.
| [1] PlasticsEurope. Plastics-the fast Facts 2023 [R]. PlasticsEurope Deutschland e. V. 2023.[2] Geyer R,Jambeck JR,Law KL. Production,use,and fate of all plastics ever made [J]. Science Advances,2017,3 (7):e1700782.[3] Mortula MM,Atabay S,Fattah KP,et al. Leachability of microplastic from different plastic materials [J]. Journal of Environmental Management,2021,294:112995.[4] Phuong NN,Zalouk-Vergnoux A,Poirier L,et al. Is there any consistency between the microplastics found in the field and those used in laboratory experiments?[J]. Environmental Pollution,2016,211:111-123.[5] Thompson RC,Olsen Y,Mitchell RP,et al. Lost at sea:Where is all the plastic?[J]. Science,2004,304 (5672):838.[6] Arthur C,Baker JE,Bamford HA. Proceedings of the international research workshop on the occurrence,effects,and fate of microplastic marine debris [C]. University of Washington Tacoma,Tacoma,WA,USA,2008.[7] Thompson RC,Courtene-Jones W,Boucher J,et al. Twenty years of microplastic pollution research-what have we learned?[J]. Science,2024,386 (6720).[8] Leusch FDL,Lu HC,Perera K,et al. Analysis of the literature shows a remarkably consistent relationship between size and abundance of microplastics across different environmental matrices [J]. Environmental Pollution,2023,319:120984.[9] Santos RG,Machovsky-Capuska GE,Andrades R. Plastic ingestion as an evolutionary trap:Toward a holistic understanding [J]. Science,2021,373 (6550):56-60.[10] Kuhn S,Van Franeker JA. Quantitative overview of marine debris ingested by marine megafauna [J]. Marine Pollution Bulletin,2020,151:110858.[11] Edo C,Fernandez-Alba AR,Vejsnaes F,et al. Honeybees as active samplers for microplastics [J]. Science of The Total Environment,2021,767:144481.[12] Foley CJ,Feiner ZS,Malinich TD,et al. A meta-analysis of the effects of exposure to microplastics on fish and aquatic invertebrates [J]. Science of The Total Environment,2018,631-632:550-559.[13] K?gel T,Bjor?y ?,Toto B,et al. Micro-and nanoplastic toxicity on aquatic life:Determining factors [J]. Science of The Total Environment,2020,709:136050.[14] Tian Z,Zhao H,Peter KT,et al. A ubiquitous tire rubber-derived chemical induces acute mortality in coho salmon [J]. Science,2021,371 (6525):185-189.[15] Thornton Hampton LM,Brander SM,Coffin S,et al. Characterizing microplastic hazards:Which concentration metrics and particle characteristics are most informative for understanding toxicity in aquatic organisms?[J]. Microplastics and Nanoplastics,2022,2 (1):20.[16] Mohamed Nor NH,Kooi M,Diepens NJ,et al. Lifetime accumulation of microplastic in children and adults [J]. Environmental Science & Technology,2021,55 (8):5084-5096.[17] Catarino AI,Macchia V,Sanderson WG,et al. Low levels of microplastics(mp)in wild mussels indicate that mp ingestion by humans is minimal compared to exposure via household fibres fallout during a meal [J]. Environmental Pollution,2018,237:675-684.[18] Li Y,Tao L,Wang Q,et al. Potential health impact of microplastics:A review of environmental distribution,human exposure,and toxic effects [J]. Environment & Health,2023,1 (4):249-257.[19] Ragusa A,Svelato A,Santacroce C,et al. Plasticenta:First evidence of microplastics in human placenta [J]. Environment International,2021,146:106274.[20] Zhu L,Zhu J,Zuo R,et al. Identification of microplastics in human placenta using laser direct infrared spectroscopy [J]. Science of The Total Environment,2023,856:159060.[21] Baeza-Martínez C,Olmos S,González-Pleiter M,et al. First evidence of microplastics isolated in european citizens′ lower airway [J]. Journal of Hazardous Materials,2022,438:129439.[22] Jenner LC,Rotchell JM,Bennett RT,et al. Detection of microplastics in human lung tissue using μftir spectroscopy [J]. Science of The Total Environment,2022,831:154907.[23] 雷俊求,王词稼,韩宝辉,等。海洋微塑料检测技术研究进展 [J/OL]. 激光与光电子学进展,1-33 [2025-10-04]. https://doi.org/10.3788/LOP251344.[24] Lusher AL,Br?te ILN,Munno K,et al. Is It or Isn’t It:The Importance of Visual Classification in Microplastic Characterization [J]. Applied Spectroscopy,2020,74 (9):1139-1153.[25] Wagner J,Wang ZM,Ghosal S,et al. Novel method for the extraction and identification of microplastics in ocean trawl and fish gut matrices [J]. Analytical Methods,2017,9 (9):1479-1490.[26] Fries EH. Dekiff J,Willmeyer J,et al. Identification of polymer types and additives in marine microplastic particles using pyrolysis GC/MS and scanning electron microscopy [J]. Environmental Science:Processes & Impacts,2013,15 (10):1949-1956.[27] Wang ZM,Wagner J,Ghosal S,et al. SEM/EDS and optical microscopy analyses of microplastics in ocean trawl and fish guts [J]. Science of The Total Environment,2017,603-604:616-626.[28] 张利,王仙芳,白捷。热分析技术在环境介质微塑料检测中的应用进展 [J]. 环境污染与防治,2025,47 (09):126-132.[29] 李颖泉,杨婉婷,段凯祥,等。大气微塑料的来源及采样分析方法研究 [J]. 环境科学与管理,2025,50 (09):119-124.[30] Fischer M,Scholz-B?ttcher BM. Simultaneous Trace Identification and Quantification of Common Types of Microplastics in Environmental Samples by Pyrolysis-Gas Chromatography-Mass Spectrometry [J]. Environmental Science & Technology,2017,51 (9):5052-5060.[31] 刘阳,曹文庚,王妍妍,等。环境样品中微纳米塑料采集提取与分析技术研究进展 [J]. 岩矿测试,2025,44 (04):531-545.[32] Ribeiro-Claro P,Nolasco MM,Araújo C,et al. Comprehe Analytical Chemistry [J]. Elsevier,2017,75:119.[33] 樊许娜,陈永艳,邢方潇,等。显微拉曼光谱法和显微红外光谱法检测饮用水中微塑料的初步比较研究 [J]. 环境卫生学杂志,2023,13 (01):54-59.[34] 李珊,张岚,陈永艳,等。饮用水中微塑料检测技术研究进展 [J]. 净水技术,2019,38 (04):1-8.[35] Pealver R,Arroyo-Manzanares N,Ignacio López-García,et al. An overview of microplastics characterization by thermal analysis [J]. Chemosphere,2019,242:125170.[36] 马敏。微塑料在典型污水处理厂中的分布特征及其对 PFASs 的载体作用研究 [D]. 长春:东北师范大学,2024.[37] 代祎炜,刘欣颖,王雲凤,等。土壤微塑料的来源、检测方法及赋存特征 [J]. 有色金属 (冶炼部分),2025 (01):126-140.[38] 侯军华,檀文炳,余红,等。土壤环境中微塑料的污染现状及其影响研究进展 [J]. 环境工程,2020,38 (02):16-27,15.[39] 丁剑楠,张闪闪,邹华,等。淡水环境中微塑料的赋存、来源和生态毒理效应研究进展 [J]. 生态环境学报,2017,26 (09):1619-1626.[40] 刘强,徐旭丹,黄伟,等。海洋微塑料污染的生态效应研究进展 [J]. 生态学报,2017,37 (22):7397-7409. |
| [1] | . 怒江流域云南段生态系统服务时空动态研究[J]. 农业与技术, 2025, 45(23): 77-82. |
| [2] | . 全球重要农业文化遗产地万年县农业景观格局生境时空演变及驱动力分析[J]. 农业与技术, 2025, 45(22): 79-86. |
| [3] | . 基于多源卫星遥感的农业生态系统碳中和评估方法进展及桃战[J]. 农业与技术, 2025, 45(22): 87-91. |
| [4] | . 钾在矿区农用土壤重金属形态转化过程中的作用研究进展[J]. 农业与技术, 2025, 45(22): 92-95. |
| [5] | . 河南省森林康养品牌资源空间分布特征及其影响因素[J]. 农业与技术, 2025, 45(22): 96-101. |
| [6] | . 基于LightGBM-SHAP模型的水库溶解氧浓度预测与关键因子分析[J]. 农业与技术, 2025, 45(22): 102-106. |
| [7] | . 基于ISSR标记的大别山区野生蕲艾种质资源评价[J]. 农业与技术, 2025, 45(22): 107-111. |
| [8] | . 劳动力转移对农业碳排放的影响研究[J]. 农业与技术, 2025, 45(21): 72-78. |
| [9] | . 基于SWAT模型的流溪河氮磷通量时空分布评估及影响因素[J]. 农业与技术, 2025, 45(21): 85-90. |
| [10] | . 废弃矿山生态修复技术与环境效果评价探析[J]. 农业与技术, 2025, 45(21): 91-95. |
| [11] | . 襄阳市降水化学组成特征及变化趋势分析[J]. 农业与技术, 2025, 45(21): 96-101. |
| [12] | . 河北省土地利用时空动态分析[J]. 农业与技术, 2025, 45(20): 59-66. |
| [13] | . 黄准海平原干旱指数时空分布特征及对净初级生产力的影响[J]. 农业与技术, 2025, 45(20): 67-74. |
| [14] | . 平潭生态产品价值实现评价研究[J]. 农业与技术, 2025, 45(20): 80-87. |
| [15] | . 黄河流域山西段生态系统服务价值评估[J]. 农业与技术, 2025, 45(20): 88-94. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||