摘要: SPLSQUAMOSA PROMOTER BINDING PROTEIN-LIKE基因编码植物所特有的转录因子,其家族成员多包含miR156结合位,点,在转录后水平受到mR156的负调控。SPL能够参与植物发育阶段转变、花发育、胁迫响应、根发育、形态建成等多种生物学过程,随着技术的发展,关于SPL功能的研究逐渐深入。本研究主要从SPL参与调控花发育、响应胁迫、调控根发育3个方面进行阐述,为进一步研究SPL转录因子的功能奠定基础。
中图分类号:
. SPL转录因子研究进展[J]. 农业与技术, 2022, 42(8): 25-27.
[1]Cardon G H,Hohmann S,Nettesheim K,et al.Functional analy-sis of the Arabidopsis thaliana SBP-box gene SPL3:a novel geneinvolved in the floral transition J].Plant Joumal,1997,122:367-377. [2]Yao T,Park B S,Mao HZ,et al.Regulation of flowering time bySPL10/MED25 module in Arabidopsis J].New Phytol,2019,2241:493-504. [3]Gou J,Tang C,Chen N,et al.SPL7 and SPL8 represent a novelflowering regulation mechanism in switchgrass [J].New Phytol,2019,2223:1610-1623. [4]Arshad M,Feyissa B A,Amyot L,et al.MicroRNA156 improvesdrought stress tolerance in alfalfa Medicago sativaby silencingSPL13 [J].Plant Science,2017,258:122-136. [5]Hongmin H,Hui J,Qin Y,et al.Overexpression of a SBP-BoxGene VpSBP16from Chinese Wild Vitis Species in ArabidopsisImproves Salinity and Drought Stress Tolerance J].IntemationalJournal of Molecular ences,2018,19 4:940. [6]Zhang D,Han Z,Li J,et al.Genome-wide analysis of the SBP-box gene family transeription factors and their responses to abioticstresses in tea Camellia sinensis[J].Genomics,2020,1123:2194-2202. [7]Kun N,Su C,Haijiao H,et al.Molecular characterization andexpression analysis of the SPL gene family with BpSPL9 transgeniclines found to confer tolerance to abiotic stress in Betula platyphyllaSuk[J].Plant Cell,2017,1303:469-481. [8]Ma Y,Xue H,Zhang F,et al.The miR156/SPL.module regu-lates apple salt stress tolerance by activating MdWRKY100 expres-sion [J].Plant biotechnology journal,2020,19 2:311-323. [9]张丽.烟草NtabSPL6-2和NtabSPL6-3基因的功能研究[D]西安:西北大学,2019. [10]Choonkyun J,Song YY,Yeon J K,et al.Transcript Profile ofTransgenic Arabidopsis Constitutively Producing Methyl Jasmonate[J].Plant Physiol Biochem,2019,141:193-201. [11]Gao R,Wang Y,Gruber M Y,et al.miR156/SPL10 ModulatesLateral Root Development,Branching and Leaf Morphology in Ara-bidopsis by Silencing AGAMOUS-LIKE 79 [J].Front Plant J,2017,8:2226. [12]Barrera-Rojas C H,Rocha G H B,Polverari L,et al.miR156-targeted SPL10 controls Arabidopsis root meristem activity and root-derived de novo shoot regeneration via cytokinin responses [J].Joumal of Experimental Botany,2020,71 3:934-950. [13]Shao Y,Zhou H,Wu Y,et al.OsSPL3,an SBP-Domain Pro-tein,Regulates Crown Root Development in Rice [J].The Plantcell,2019,316:1257-1275. [14]Li X,Shen F,Xu X,et al.An HD-ZIP transcription factor,MxHB13,integrates auxin-regulated and juvenility-determinedcontrol of adventitious rooting in Malus xiaojinensis [J].The Plantjoumal for cell and molecular biology,2021:1663-1680. [15]Sun H,Mei J,Zhao W,et al.Phylogenetic Analysis of theSQUAMOSA Promoter-Binding Protein-Like Genes in Four Ipo-moea Species and Expression Profiling of the IhSPLs During Stor-age Root Development in Sweet Potato Ipomoea batatas[J]. Front Plant Sci,2022,12:801061. |
[1] | . 山地城市群城市洪涝韧性时空格局研究[J]. 农业与技术, 2024, 44(7): 78-85. |
[2] | . 汉江流域生境质量时空变化特征及驱动力分析[J]. 农业与技术, 2024, 44(7): 86-92. |
[3] | . 科尔沁左翼中旗土地沙化时空动态变化及驱动力分析[J]. 农业与技术, 2024, 44(7): 93-97. |
[4] | . 人工湿地在乌梁素海水环境治理中的应用研究[J]. 农业与技术, 2024, 44(7): 101-105. |
[5] | . 东北地区积雪典型年的大气环流综合分析[J]. 农业与技术, 2024, 44(6): 54-61. |
[6] | . 龙溪河流域土地利用变化及影响因素研究[J]. 农业与技术, 2024, 44(6): 62-68. |
[7] | . Cd污染对艾纳香根际土壤因子及微生物种群的影响[J]. 农业与技术, 2024, 44(6): 69-74. |
[8] | . 区域三生系统同发展水平评价及障碍因素分析[J]. 农业与技术, 2024, 44(6): 75-80. |
[9] | . 乡村振兴中水文地质调查与利用[J]. 农业与技术, 2024, 44(6): 81-85. |
[10] | . 基于深度学习的宏观风资源评估与风电场选址[J]. 农业与技术, 2024, 44(6): 86-90. |
[11] | . 基于GIS的藏东南泥石流灾害风险预警系统研发[J]. 农业与技术, 2024, 44(6): 91-96. |
[12] | . 容县耕地土壤有机碳分布特征及其影响因素[J]. 农业与技术, 2024, 44(5): 92-97. |
[13] | . 辽宁省农作物秸秆基料化利用现状与对策[J]. 农业与技术, 2024, 44(5): 98-100. |
[14] | . 新发展阶段视角下的干旱地区农业面源污染治理思考[J]. 农业与技术, 2024, 44(5): 101-106. |
[15] | . 一株产电菌的产电性能及低温沼气发酵过程微生物群落特征[J]. 农业与技术, 2024, 44(5): 107-111. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||