农业与技术 ›› 2022, Vol. 42 ›› Issue (16): 100-103.DOI: 10.19754/j.nyyjs.20220830025
牟妍
出版日期:
2022-08-31
发布日期:
2022-08-30
作者简介:
牟妍(1998-),女,硕士在读。研究方向:多阴极反硝化除磷产电技术。
Online:
2022-08-31
Published:
2022-08-30
摘要: 我国水体富营养化问题日益严重。与传统除磷工艺相比,反硝化除磷工艺对水中污染物具有更好的去除效果,对污水处理的发展具有重要影响。反硝化除磷是基于传统生物除磷工艺,利用反硝化聚磷菌(DPAOs)以NO,-N或NO,-N为电子受体替代氧气,突破传统的厌氧释磷和好氧吸磷机制,实现同步脱氮除磷。文中简述了反硝化除磷工艺机理及其研究进展。分析探索了温度、H值、溶解氧、污泥浓度、污泥龄、碳源和电子受体对反硝化除磷工艺的影响并提出建议的运行条件。
中图分类号:
. 反硝化除磷工艺及影响因素的研究进展[J]. 农业与技术, 2022, 42(16): 100-103.
[1]赵伟华,郑蛛卉,王凯.污水反硝化除磷技术的机理与工艺研究进展[J].水处理技术,2020,46(07):1-5,25. [2]Dai H,Lu X,Peng L,et al.Enrichment culture of denitrifyingphosphorus removal sludge and its microbial community analysis[J].Environmental Technology,2017,38 (22):2800-2810. [3]Zeng W,Li B X,Yang Y,et al.Impact of nitrite on aerobicphosphorus uptake by poly-phosphate accumulating organisms in en-hanced biological phosphorus removal sludges J].Bioprocess andBiosystems Engineering,2014,37 (2):277-287. [4]Mesquita D P,Amaral A L,Leal C,et al.Monitoring intracellu-lar polyphosphate accumulation in enhanced biological phosphorusremoval systems by quantitative image analysis [J].Water Scienceand Technology,2014,69(11):2315-2323. [5]Vaiopoulou E,Aivasidis A.A modified UCT method for biologicalnutrient removal:Configuration and performance[J].Chemo-sphere,2008,72(7):1062-1068. [6]王晓玲.MUCT工艺缺氧吸磷性能强化技术研究[D].哈尔滨:哈尔滨工业大学,2010. [7]Zhu R,Wu M,Yang J.Effect of sludge retention time and phos-phorus to carbon ratio on biological phosphorus removal in HS-SBRprocess [J].Environmental Technology,2013,34 (04):429-435. [8]Kuba T,Van Loosdreeht M C M,Heijnen JJ.Phosphorus and ni-trogen removal with minimal COD requirement by integration of deni-trifying dephosphatation and nitrification in a two-sludge system[J].Water Research,1996,30(7):1702-1710. [9]李微,高明杰,曾飞,等.温度和碳源对短程反硝化除磷效果的影响[J].水处理技术,2020,46(08):55-59 [10]Li C,Liu S,Ma T,et al.Simultaneous nitrification,denitrifi-cation and phosphorus removal in a sequencing batch reactor(SBR)under low temperature [J].Chemosphere,2019,229:132-141. [11]张帆,于德爽,刘杰,等.基于反硝化除磷的低温启动与稳定运行的中试试验[J].环境科学,2019,40(09):4136-4142. [12]Li W,Zhang H Y,Sun HZ,et al.Influence of pH on short-cutdenitrifying phosphorus removal [J].Water Science and Engi-neering,2018,11(1):17-22. [13]巩有奎,冯华,任丽芳,等.pH调控反硝化除磷过程PAOs-GAOs竞争及N,0释放特性[J].环境科学与技术,2021,44(07):145-153. [14]蒋轶锋,王志彬.用pH值强化以NO2ˉ-N为电子受体的反硝化除磷效能[J].中国给水排水,2019,35(15):125-129. [15]缪新年,程诚,朱琳,等.短程硝化和反硝化除磷耦合工艺研究进展[J].水处理技术,2020,46(12):12-16,24. [16]Zhu G C,Lu YZ,Xu L R.Effects of the carbon/nitrogen (C/N)ratio on a system coupling simultaneous nitrification and deni-trification SND)and denitrifying phosphorus removal (DPR)[J].Environmental Technology,2020,42 (19):1-7. [17]Li D H,Li W G,Zhang K L,et al.Nutrient removal by full-scale Bi-Bio-Selector for nitrogen and phosphorus removal processtreating urban domestic sewage at low C/N ratio and low tempera-ture conditions [J].Process Safety and Environmental Protection,2020,140(prepublish):199-210. [18]朱文韬,吕锡武,史静.电子受体和MLSS对反硝化除磷的影响[J].净水技术,2014,33(05):31-37. [19]王晓霞,甄建园,赵骥,等.不同污泥龄(SRT)对SNED-PR系统脱氮除磷影响[J].环境科学,2019,40(01):352-359. [20]付昆明,傅思博,刘凡奇,等.不同碳源对反硝化SBR反应器N20释放的影响[J].环境工程,2021,39(09):56-62. [21]Yao R,Yuan Q,Wang K J.Enrichment of Denitrifying BacterialCommunity Using Nitrite as an Electron Acceptor for Nitrogen Re-moval from Wastewater [J].Water,2019,12 (1):48. [22]Guo Y,Zeng W,Li N,et al.Effect of electron acceptor on com-munity structures of denitrifying polyphosphate accumulating organ-isms in anaerobic-anoxic-oxic (A2/0)process using DNA basedstable-isotope probing (DNA-SIP )[J].Chemical EngineeringJoural,2018,334:2039-2049. [23]吕永涛,张瑶,闫建平,等.电子受体及投加方式对反硝化除磷及N20释放影响[J].水处理技术,2017,43(12):38-42. |
[1] | . 山地城市群城市洪涝韧性时空格局研究[J]. 农业与技术, 2024, 44(7): 78-85. |
[2] | . 汉江流域生境质量时空变化特征及驱动力分析[J]. 农业与技术, 2024, 44(7): 86-92. |
[3] | . 科尔沁左翼中旗土地沙化时空动态变化及驱动力分析[J]. 农业与技术, 2024, 44(7): 93-97. |
[4] | . 人工湿地在乌梁素海水环境治理中的应用研究[J]. 农业与技术, 2024, 44(7): 101-105. |
[5] | . 东北地区积雪典型年的大气环流综合分析[J]. 农业与技术, 2024, 44(6): 54-61. |
[6] | . 龙溪河流域土地利用变化及影响因素研究[J]. 农业与技术, 2024, 44(6): 62-68. |
[7] | . Cd污染对艾纳香根际土壤因子及微生物种群的影响[J]. 农业与技术, 2024, 44(6): 69-74. |
[8] | . 区域三生系统同发展水平评价及障碍因素分析[J]. 农业与技术, 2024, 44(6): 75-80. |
[9] | . 乡村振兴中水文地质调查与利用[J]. 农业与技术, 2024, 44(6): 81-85. |
[10] | . 基于深度学习的宏观风资源评估与风电场选址[J]. 农业与技术, 2024, 44(6): 86-90. |
[11] | . 基于GIS的藏东南泥石流灾害风险预警系统研发[J]. 农业与技术, 2024, 44(6): 91-96. |
[12] | . 容县耕地土壤有机碳分布特征及其影响因素[J]. 农业与技术, 2024, 44(5): 92-97. |
[13] | . 辽宁省农作物秸秆基料化利用现状与对策[J]. 农业与技术, 2024, 44(5): 98-100. |
[14] | . 新发展阶段视角下的干旱地区农业面源污染治理思考[J]. 农业与技术, 2024, 44(5): 101-106. |
[15] | . 一株产电菌的产电性能及低温沼气发酵过程微生物群落特征[J]. 农业与技术, 2024, 44(5): 107-111. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||