农业与技术 ›› 2025, Vol. 45 ›› Issue (14): 23-26.DOI: 10.19754/j.nyyjs.20250730006
• 农业科学 • 上一篇
张慧芝 姜静 李丽丽 杨洪一
出版日期:
2025-07-30
发布日期:
2025-07-30
作者简介:
张慧芝(2000-),女,硕士在读。研究方向:微生物学研究:通信作者李丽丽(1978-),女,博士,研究员。研究方向:微
生物学研究。
基金资助:
Online:
2025-07-30
Published:
2025-07-30
摘要: 菌根真菌通过与植物根系形成共生关系,显著捉高了植物在重金属胁迫环境中的生存能力。研究发现, 菌根真菌能够通过吸附、固定和转化土壤中的重金属离子,降低植物对重金属的吸收,减轻重金属对植物的毒害 作用。同时,菌根真菌还能调节植物的生长和生理代谢,增强植物的抗逆性,从而帮助植物更好地抵御重金属胁 迫。本文总结了菌根真菌抗重金属的机理,包括诱导植物生长及吸收养分、诱导植物激活酶和非酶防御系统、诱 导植物根系变化3个路径。通过总结菌根真菌与根系微生物群落的联合响应,为植物一菌根真菌-细菌联合修复 的推广应用提供参考。
中图分类号:
. 菌根真菌缓解植物重金属胁迫研究进展[J]. 农业与技术, 2025, 45(14): 23-26.
[1]Zenk M H.Heavy metal detoxification in higher plants-a review [J].Geme,1996,179(1):21-30. [2]Wang Y,Chen X,Chen J.Advances of the mechanism for copper tolerance in plants [J].Plant Sci,2025,350:112299. [3]Huybrechts M,Cuypers A,Deckers J,et al.Cadmium and Plant Development:An Agony from Seed to Seed J].Int J Mol Sci, 2019,20(16):3971. [4]Ouzounidou G,Moustakas M,Symeonidis L,et al.Response of wheat seedlings to ni stress:effects of supplemental calcium [J].Arch Environ Contam Toxicol,2006,50 (3):346-352. [5]Marro N,Grilli G,Soteras F,et al.The effects of arbuscular my- corrhizal fungal species and taxonomic groups on stressed and un- stressed plants:a global meta-analysis [J].New Phytol,2022, 235(1):320-332. [6]Wang L,Zhang L,George T S,et al.A core microbiome in the hyphosphere of arbuscular mycorrhizal fungi has functional signifi- cance in organic phosphorus mineralization J].New Phytol, 2023,238(2):859-873. [7]Al Mutairi AA,Cavagnaro T R,Khor S F,et al.The effect of zinc fertilisation and arbuscular mycorrhizal fungi on grain quality and yield of contrasting barley cultivars [J].Funct Plant Biol, 2020,47(2):122-133. [8]Naciri R,Chtouki M,Oukarroum A.Mechanisms of cadmium mit- igation in tomato plants under orthophosphate and polyphosphate fer- tilization regimes J ]Ecotoxicol Environ Saf,2024,274: 116219. [9]Han Y,Zveushe O K,Dong F,et al.Unraveling the effects of ar- buscular mycorrhizal fungi on cadmium uptake and detoxification mechanisms in perennial ryegrass (Lolium perenne)[J].Sci Total Environ,2021,798:149222. [10]ourand P,Hannibal L,Majorel C,et al.Ectomycorrhizal Piso- lithus albus inoculation of Acaciaspirorbis and Eucalyptus globulus grown in ultramafic topsoil enhances plant growth and mineral nu- trition while limits metal uptake [J ]J Plant Physiol,2014, 171(2):164-172. [11]Andrade S A,Silveira A P,Mazzafera P.Arbuscular mycorrhiza alters metal uptake and the physiological response of Coffea arabica seedlings to increasing Zn and Cu concentrations in soil [J].Sci Total Environ,2010,408(22):5381-5391. [12]Mittler R,Zandalinas S I,Fichman Y,et al.Reactive oxygen species signalling in plant stress responses [J].Nat Rev Mol Cell Biol,2022,23(10):663-679.[13]Boojar MM,Goodarzi F.The copper tolerance strategies and the role of antioxidative enzymes in three plant species grown on copper mine[J].Chemosphere,2007,67(11):2138-2147. [14]Riaz M,Kamran M,Fang Y,et al.Arbuscular mycorrhizal fungi -induced mitigation of heavy metal phytotoxicity in metal contami- nated soils:A critical review [J].J Hazard Mater,2021,402: 123919. [15]Emamverdian A,Ding Y,Mokhberdoran F,et al.Growth Re- sponses and Photosynthetic Indices of Bamboo Plant Indocalamus latifolius)under Heavy Metal Stress [J].Scientific World Jour- nal,2018,2018:1219364. [16]Luo J,Li X,Jin Y,et al.Effects of Arbuscular Mycorrhizal Fungi Glomus mosseae on the Growth and Medicinal Components of Dysosma versipellis Under Copper Stress [J].Bull Environ Cont- am Toxicol,2021,107(5):924-930. [17]Azcon R,Peralvarez Mdel C,Roldan A,et al.Arbuscular my- corrhizal fungi,Bacillus cereus,and Candida parapsilosis from a multicontaminated soil alleviate metal toxicity in plants [J).Mi-crob Ecol,2010,59(4):668-677. [18]Hayat K,Khan J,Khan A,et al.Ameliorative Effects of Exoge- nous Proline on Photosynthetic Attributes,Nutrients Uptake,and Oxidative Stresses under Cadmium in Pigeon Pea Cajanus cajan L.)[J].Plants(Basel),2021,10(4):796. [19]Kiran B R,Prasad M N V.Biochar and rice husk ash assisted phytoremediation potentials of Ricinus communis L.for lead- spiked soils [J].Ecotoxicol Environ Saf,2019,183:109574. [20]Riaz M,Zhao S,Kamran M,et al.Effect of nano-silicon on the regulation of ascorbate-glutathione contents,antioxidant defense system and growth of copper stressed wheat (Triticum aestivum L.)seedlings [J].Front Plant Sci,2022,13:986991. [21]Mishra S,Tripathi R D,Srivastava S,et al.Thiol metabolism play significant role during cadmium detoxification by Ceratophyl- lum demersum L [J].Bioresour Technal,2009,100 (7): 2155-2161. [22]Gonzalez-Guerrero M,Oger E,Benabdellah K,et al.Charac- terization of a CuZn superoxide dismutase gene in the arbuscular mycorrhizal fungus Glomus intraradices [J].Curr Genet,2010, 56(3):265-274. [23]Chen J,Wang L,Liang X,et al.An arbuscular mycorrhizal fun- gus differentially regulates root traits and cadmium uptake in two maize varieties J].Ecotoxicol Environ Saf,2023,264: 115458. [24]崔令军,刘瑜霞,林健,等。.盐胁迫下丛枝菌根真菌对桢楠 根系生长和激素的影响[J].南京林业大学学报(自然科学 版),2020,44(04):119-124. [25]Zhao S,Yan L,Kamran M,et al.Arbuscular Mycorrhizal Fungi -Assisted Phytoremediation:A Promising Strategy for Cadmium- Contaminated Soils J].Plants Basel),2024,13 23 ) 4289.[26]Timofeeva A M,Galyamova M R,Sedykh S E.How Do Plant Growth-Promoting Bacteria Use Plant Hormones to Regulate Stress Reactions?[J].Plants Basel),2024,13 (17):2371. [27]赵廷,杨基先,汤丁丁,等.BC-AMF联合对水稻根际Cd固 定的趋向调控机制[J].哈尔滨工业大学学报,2025,57 (05):11-21. [28]Hao L,Zhang Z,Hao B,et al.Arbuscular mycorrhizal fungi al- ter microbiome structure of rhizosphere soil to enhance maize toler- ance to La [J.Ecotoxicol Environ Saf,2021,212:111996. [29]Wang X,Fang L,Beiyuan J,et al.Improvement of alfalfa re- sistance against Cd stress through rhizobia and arbuscular mycorrhi- za fungi co-inoculation in Cd-contaminated soil [J.Environ Pollut,2021,277:116758. [30 Zeng W,Xiang D,Li X,et al.Effects of combined inoculation of arbuscular mycorrhizal fungi and plant growth-promoting rhizo- sphere bacteria on seedling growth and rhizosphere microecology J.Front Microbiol,2024,15:1475485. |
[1] | . 东北地区黑木耳常见栽培方式比较试验[J]. 农业与技术, 2025, 45(14): 9-12. |
[2] | . 盐胁迫下褪黑素引发对玉米种子萌发的影响[J]. 农业与技术, 2025, 45(14): 18-22. |
[3] | . 不同保鲜剂对油麦菜保鲜效果的影响[J]. 农业与技术, 2025, 45(13): 6-13. |
[4] | . 粉煤灰对玉米幼苗生长性状的影响研究[J]. 农业与技术, 2025, 45(13): 14-18. |
[5] | . 茶叶标本制作方法研究[J]. 农业与技术, 2025, 45(12): 1-6. |
[6] | . 红茄梨与库尔勒香梨杂交后代果实若干性状遗传规律初探[J]. 农业与技术, 2025, 45(12): 7-12. |
[7] | . 超高压辅助表面活性剂工艺在废次烟叶游离茄尼醇提取中的应用[J]. 农业与技术, 2025, 45(12): 13-18. |
[8] | . 喷施植物生长调节剂对鄂芝9号株型及产量的影响[J]. 农业与技术, 2025, 45(12): 19-22. |
[9] | . 光合细菌开发利用研究[J]. 农业与技术, 2025, 45(12): 23-25. |
[10] | . 黄芩主要活性成分提取工艺及药理活性研究进展[J]. 农业与技术, 2025, 45(12): 26-30. |
[11] | . 藤仓镰刀菌生防菌的分离鉴定及室内毒力测定[J]. 农业与技术, 2025, 45(12): 37-40. |
[12] | . 光质对鲜切菊瓶插寿命及相关生理生化指标的影响[J]. 农业与技术, 2025, 45(11): 1-6. |
[13] | . 苹果梨大果芽变品系果实品质综合评价[J]. 农业与技术, 2025, 45(11): 7-10. |
[14] | . 不同贮藏时间茶树花内含成分差异分析[J]. 农业与技术, 2025, 45(11): 11-14. |
[15] | . 玉米肽复合膜的制备及其对油脂抗氧化研究[J]. 农业与技术, 2025, 45(11): 15-18. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||