农业与技术 ›› 2025, Vol. 45 ›› Issue (6): 1-6.DOI: 10.19754/j.nyyjs.20250330001
• 农业科学 •
高雪霞 李宾宾 吕敏 凡欣雨 吕新铭 袁肖寒 顾成波
出版日期:
2025-03-30
发布日期:
2025-03-30
作者简介:
高雪霞(1999-),女,硕士在读。研究方向:环境修复;通信作者顾成波(1975-),男,博士,教授。研究方向:植物与微
生物资源开发利用。
基金资助:
Online:
2025-03-30
Published:
2025-03-30
摘要: 为开发新的菌种资源并获得具有优良促生作用的根际促生菌,本文从木豆根际土中分离并纯化出26株 根际菌,并系统评估了其植物促生特性,包括解磷、产铁载体、固氨及吲哚-3-乙酸(IAA)产生能力。对具有 优异性能的菌株进行了16SDNA鉴定,并通过盆栽实验研究其对植物生长的促生效果。结果表明,所有分离的 26株菌株均至少表现出1种促生相关特性,其中16株具有解磷能力,19株具有产铁载体能力,20株具有固氨能 力,12株具有产IAA能力。筛选出具有4种及以上促生特性的菌株6株。通过综合比较这6株菌株的促生性能, 菌株R15表现出显著的促生效果,经分子生物学鉴定为沙雷菌(Serratia sp.)。盆栽实验结采表明,菌株R15对 木豆具有明显的促生作用。与对照组相比,接种R15后,木豆的株高、根长、地上部干重和根部干重分别增加 了1.79%、36.36%、34.11%和42.86%;叶绿素a、叶绿素b和类胡萝卜素的含量分别增加了17.71%、31.31% 和30.27%;同时,超氧化物歧化酶(SOD)、过氧化物酶(P0D)和过氧化氢酶(CAT)的活性分别增加了 1.82%、28.78%和55.25%。因此,本文从木豆根际土壤中分离出1株具有较强促生特性的菌株R15,为生物肥 料的研发提供了潜在的菌种资源和理论支持。
中图分类号:
. 木豆特异根际促生细菌R15的分离鉴定及促生作用研究[J]. 农业与技术, 2025, 45(6): 1-6.
[1]Janga A,Kumar K,Maikhuri S,et al.Unveiling sress=adapted endophytie bacteria:Characterizing plant growth-promoting traits andassessing cross-inoculation effecls on Populus deltoides under abiotic sress [J].Plant Physiology and Biochemistry, 2024, 210:108610. [2]Waqar S,Bhat A A,Khan A A. Endophytic fungi:Unravelling plant=endophyte interaction and the multifaceted role of fungal endo- phytes in sress amelioration [J].Plant Physiology and Biochemis- ty,2024,206:108174. [3]Kapoor D,Sharma P,Sharma M M M,et al.Exploring soil mi- crobiota and their role in plant growth,stress tolerance,disease control andnutrientimmobilizer[J].Biocatalysisand Agricultural Biotechnology,2024,61:103358. [4]Li Z,Bai X, Jiao S, et al. A simplified synthetic community res- cues Astragalus mongholicus from root rot disease by activatingplant -induced systemic resistance [J].Mierobiome,2021,9 (1): 217. [5]Alexander D B,Zuberer D A.Use of chrome azurol S reagents to e valuate siderophore production by rhizosphere bacteria [J].Biology and Fertility of Soils,1991,12:39-45. [6]Ge H,ZhangF.Growth-promoting ability ofrhodopseudomonas palustris G5and its effect on inducedresistance in cucumber against salt stress [J].Joumal of Plant Growth Regulation,2018,38 (1):180-188. [7]Kamneva A A, Shchelochkova A G, Perlievb Y D, et al. Pectro- scopic investigationofindole-3-aceticacidinteractionwithiron (Ill) [J].Joumal of Molecular Structure,2001:565-572. [8]Wang L,Lin H,Dong Y,et al. Isolation of vanadium-resistance endophytic bacterium PREO1 from Pteris vittata in stone coal smel- tingdistrict and characterization for potentialuse in phytoremediation [J].Joumal of Hazardous Materials,2018,341:1-9. [9]Ahmad A,Javad S.Iqbal S,et al.Alleviation potential of green- synthesizedselenium nanoparticles for cadmium stress in Solanum ly- copersicum L:modulation of secondary metabolites andphysiochem- ical attributes [J]. Plant Cell Reports, 2024, 43 (4). [10]Garg NChandel S.Role of Arbuscular Mycorhiza in Arresting Re- active Oxygen Species (Ros)and Strengthening Antioxidant De- fense in Cajanus Cajan (L.)Millsp. Nodules Under Salinity (Nacl)and Cadmium (Cd)Stress [J].Plant Growth Regula tion,2014.75(2):521-534.[11]Wu S,Hu C,Tan Q,et al.Effects of Molybdenum on Water U- tilization,Antioxidative Defense System and Osmotic-Adjustment Ability in Winter Wheat Triticum aestivum )under Drought Stress [J].Plant Physiology and Biochemistry,2014,83:365 -374. 12]Wan Y,Luo S,Chen J,et al.Effect of endophyte-infection on growth parameters and Cd-induced phytotoxicity of Cd-hyperaccu- mulator Solanum nigrum L [J].Chemosphere,2012,89 (6): 743-750. [13]司春灿,林英,尚天玉.油茶根际促生菌的筛选与促生特性 [J].中南林业科技大学学报,2024,44(04):28-35. [14]Kulkova I,Wrobel B,Dobrzyfiski J.Serratia spp.as plant growth-promoting bacteria alleviating salinity,drought,and nutri- ent imbalance stresses J].Frontiers in Microbiology,2024, 15:1342331. [15]Zaheer A,Mirza B S,McLean J E,et al.Association of plant growth-promoting Serratia spp.with the root nodules of chickpea [J].Research in Microbiology,2016,167 (6):510-520. [16]Samuel OO,Glick B R,Oluranti B O.Mechanisms of action ofplant growth promoting bacteria [J].World Journal of Microbiolo- gy and Biotechnology,2017,33 (11)197. [17]Rahman S U,Khalid M,Hui N,et al.Piriformospora indica al- ter root-associated microbiome structure to enhance Artemisia an- nua L.tolerance to arsenic J].Joumal of Hazardous Materials, 2023,457:131752. [18]Shi F,Zhu S,Li H,et al.Further enhancement of cold toler- ance in rice seedlings by Piriformospora indica collaborating with plant growth-promoting bacteria:Evidence from the antioxidant defense,osmoregulation,photosynthesis,and related genes [J]. Plant Stress,2024,14. [19]鲍婷婷,孙莉琼,李晓帆,等。4种根际促生菌对菘蓝生长 与生理的影响[J].南京农业大学学报,2024,47(05): 854-863. [20]魏婷,高菡,杨代忠,等.根际促生菌对镉胁迫下油菜生理生化 及品质的影响[J].陕西科技大学学报,20必,41(04):1-7. |
[1] | . 鸡内金显微及DNA条形码鉴别特征研究[J]. 农业与技术, 2025, 45(4): 45-48. |
[2] | . 拟南芥生物钟参与CBP60g的近日节律表达研究[J]. 农业与技术, 2025, 45(4): 49-51. |
[3] | . 哈尔滨市土地利用碳排放演变及预测分析[J]. 农业与技术, 2025, 45(4): 89-95. |
[4] | . 巴彦淖尔黄河流域NDVI时空变化及其驱动因素分析[J]. 农业与技术, 2025, 45(4): 96-102. |
[5] | . 基于ANN-CA模型的喀斯特山区农村三生空间优化[J]. 农业与技术, 2025, 45(4): 103-107. |
[6] | . 小麦转录因子TaMYB60-4A生物信息学及功能分析[J]. 农业与技术, 2025, 45(3): 12-16. |
[7] | . 水稻稻谷bHH3基因的克隆及表达模式分析[J]. 农业与技术, 2025, 45(3): 29-33. |
[8] | . 东北黑土区土地利用碳排放风险与生态系统服务价值相关性研究[J]. 农业与技术, 2025, 45(3): 84-89. |
[9] | . 东北三省城乡融合对耕地利用转型的影响及空间效应研究[J]. 农业与技术, 2025, 45(3): 90-96. |
[10] | . 民族山区生物遗传资源获取与惠益分享路径研究[J]. 农业与技术, 2025, 45(3): 111-115. |
[11] | . 茂兰喀斯特地区土地利用覆盖变化对土壤有机碳储量 及固碳潜力的影响研究[J]. 农业与技术, 2025, 45(2): 87-91. |
[12] | . 基于LUCC的鹤岗市生态系统服务价值研究及趋势预测[J]. 农业与技术, 2025, 45(2): 92-96. |
[13] | . 稻田甲烷排放研究及对策建议 一以辽宁省为例[J]. 农业与技术, 2025, 45(2): 103-106. |
[14] | . RNA干扰构建载体在防治植物病毒病中的研究[J]. 农业与技术, 2025, 45(1): 35-39. |
[15] | . 基于Landsat卫星数据的上林县土地利用变化监测研究[J]. 农业与技术, 2025, 45(1): 76-81. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||