
农业与技术 ›› 2025, Vol. 45 ›› Issue (19): 95-99.DOI: 10.19754/j.nyyjs.20251015018
• 资源环境 • 上一篇
张钰 杜小凡 余柯嘉 孙庆晨 杨利伟 谷娇
出版日期:2025-10-15
发布日期:2025-10-15
作者简介:张钰(2000-),女,硕士在读。研究方向:水域生态学与水生态修复;通信作者谷娇(1988-),女,博士,副教授。研究方
向:水域生态学与水生态修复。
基金资助:Online:2025-10-15
Published:2025-10-15
摘要: 挺水植物具有较强的固碳能力和碳汇潜力,在提高淡水生态系统固碳能力方面发挥了重要作用。本文总 结了挺水植物光合固碳机理,并从气候气象因子、水文动力因子和水体理化因子3个方面分析主要环境因子对挺 水植物固碳能力的影响。挺水植物固碳能力的直接影响因子包括光照、温度、氨磷营养盐、水体盐度和水体重金 属,这些因子能够通过影响叶绿体及光合作用过程中的所需酶、叶绿素浓度等直接作用于挺水植物光合作用;间 接影响因子则通过影响挺水植物生长发育及植株结构间接影响挺水植物固碳能力,包括水位、水流,流速和降 水。研究提出加强水体理化指标监测,合理调控水位高度,降低污染负荷及外界干扰,以确保生态系统的稳定 性、挺水植物生长发育及固碳能力,并因地制宜制定植物配置方案,发挥不同植物的协同性,为提高挺水植物碳 汇能力提供参考。
中图分类号:
. 环境因子对挺水植物固碳能力的影响进展[J]. 农业与技术, 2025, 45(19): 95-99.
| [1]Downing,Cole,Duarte,et al.Global abundance and size distri- bution of streams and rivers J].Inland Waters,2012,2 (4): 229-236. [2]段巍岩,黄昌。河流湖泊碳循环研究进展[J].中国环境科 学,2021,41(08):3792-3807. [3]杨谦敏,袁丹萍,邓存宝,等。碳中和背景下植物净固碳能力 研究进展[J].生态学杂志,2023,42(06):1484-1496. [4]Hans VV,Rashmi S.Shape shifting by amphibious plants in dy- namic hydrological niches [J.The New Phytologist,2021,229 (1):79-84. [5]David T C,Ole P.Underwater photosynthesis and respiration inleaves of submerged wetland plants:gas films improve CO2 and 02 exchange [J].The New Phytologist,2008,177 (4):918-926. [6]Hussner A,Hofstra D,Jahns P.Diumal courses of net photosyn- thesis and photosystem II quantum efficiency of submerged Lagarosi- phon major under natural light conditions [J].Flora,2011,206 (10):904-909. [7]Pregitzer S K,Burton J A,Zak R D,et al.Simulated chronic ni- trogen deposition increases carbon storage in Northern Temperate for- ests [J].Global Change Biology,2008,14 (1):142-153. [8]Hayball N,Pearce M.Influences of simulated grazing and water- depth on the growth of juvenile Bolboschoenus caldwellii,Phrag- mites australis and Schoenoplectus validus plants [J].Aquatic Bot- any,2003,78(3):233-242. [9]李有志。小叶章和芦苇种子萌发以及幼苗生长对环境因子的响 应研究[D].长沙:湖南农业大学,2007. [10]连晓倩,陶长铸,郭吴澜,等。光照对芦苇生物生产力及光 合能力的影响[J].中国农学通报,2022,38(20):47-52 [11]周昱婕,李霞,陈根云,等.植物RuBisC(0研究进展[J]. 中国科学:生命科学,2023,53(09):1213-1229. [12]Peng X J,Teng L H,Yan X Q,et al.The cold responsive mechanismof the paper mulberry:decreased photosynthesis capaci- ty and increased starchaccumulation [J].BMC Genomics,2015, 16:898-917. 13]Havaux M,Tardy F,Ravenel J,et al.Thylakoid membrane sta- bility to heat stress studiedby flash spectroscopic measurements of the electrochrochromic shift in intact potatoleaves:influence of the xanthophyll content [J].Plant Cell Environ,1996,19:1359-1368. [14]Zhang P,Kuramae A,Van Leeuwen C H A,et al.Interactive effects of rising temperature and nutrient enrichment on aquatic plant growth,stoichiometry,and palatability [J ]Frontiers in Plant Science,2020,11:58.15]Von Rein I,Kayler ZE,Premke K,et al.Desiccation of sedi- ments affects assimilate transport within aquatic plants and carbon transfer to microorganisms [J].Plant Biology,2016,18 (6): 947-961. [16]Liu Q,Liu J,Liu H,et al.Vegetation dynamics under water- level fluctuations:Implications for wetland restoration [J].Jour- nal of Hydrology,2020,581:124418. [17]Han Z,Wang S,Liu X,et al.Ecological thresholds for the dom- inated wetland plants of Poyang Lake along the gradient of flooding duration [J].J.Hydraul.Eng,2019,50:252-262. 18]Paillisson J,Marion L.Water level fluctuations for managing ex- cessive plant biomass in shallow lakes [J].Ecological Engineer- ing,2011,37(2):241-247. [19]贾庆宇.辽河三角洲芦苇湿地局地气侯变化特征及地-气相互 影响关系研究[D].沈阳:沈阳农业大学,2018. [20] Vretare V,Weisner B E S.Influence of Pressurized Ventilation on Performance of an Emergent Macrophyte Phragmites australis) [J].Joural of Ecology,2000,88 (6):978-987. [21]Lin X,Wu X,Gao Z,et al.The effects of water depth on the growth of two emergent plants in an in-situ experiment [J].Sus- tainability,2022,14(18):11309. [22]Latella M,Bertagni M B,Vezza P,et al.An integrated method- ology to study riparian vegetation dynamics:From field data to im- pact modeling [J.Joumal of Advances in Modeling Earth Sys- tems,2020,12(8).[23]Lehmann A,Castella E,Lachavanne J B.Morphological traits and spatial heterogeneity of aquatic plants along sediment and depth gradients,Lake Geneva,Switzerland [J].Aquatic botany,1997, 55(4):281-299. [24]Anderson M R,Kalff J.Submerged aquatic macrophyte biomass in relation to sediment characteristics in ten temperate lakes [J]. Freshwater Biology,1988,19 (1):115-121. [25]Madsen J D,Chambers PA,James W F,et al.The interaction between water movement,sediment dynamics and submersed mac- rophytes [J].Hydrobiologia,2001,444:71-84. [26]Liao Y,Zhao S,Zhang W,et al.Chromosome-level genome and high nitrogen stress response of the widespread and ecologically important wetland plant Typha angustifolia [J].Frontiers in Plant Science,2023,14:1138498. [27]Mao Q,Lu X,Wang C,et al.Responses of understory plant physiological traits to a decade of nitrogen addition in a tropical re- forested ecosystem [J].Forest Ecology and Management,2017, 401:65-74. [28]Liu D,Du Y,Yu S,et al.Human activities determine quantity and composition of dissolved organic matter in lakes along the Yan- gtze River [J].Water Research,2020,168:115132. [29]葛滢,常杰,王晓月,等。两种程度富营养化水中不同植物 生理生态特性与净化能力的关系[J].生态学报,2000(06): 1050-1055. [30]Cheng L,Fuchigami L H.Rubisco activation state decreases with increasing nitrogen content in apple leaves [J].Joural of Experi- mental Botany,2000,51(351):1687-1694. [31 DW L.Carbon and nitrogen assimilation in relation to yield: Mechanisms are the key to understanding production systems [J]. J Exp Bot,2002,53:773-787. [32]赵可夫,李法曾,樊守金,等。中国的盐生植物[J].植物 学通报,1999(03):10-16. [33]Mauchamp A,Mesleard F.Salt tolerance in Phragmites australis populations from coastal Mediterranean marshes [J].Aquatic Bot- ay,2001,70(1):39-52.[34]赵可夫,冯立田,张圣强,等.黄河三角洲不同生态型芦苇 对盐度适应生理的研究Ⅱ.不同生态型芦苇的光合气体交换 特点[J].生态学报,2000(05):795-799 [35]Li Y,Yuan L,Cao H B,et al.A dynamic biomass model of e- mergent aquatic vegetation under different water levels and salinity [J].Ecological Modelling,2021,440:109398. [36]Jiang W,Xu L,Liu Y,et al.Effect of biochar on the growth, photosynthesis,antioxidant system and cadmium content of Mentha piperita 'Chocolate'and Mentha spicata in cadmium-contamina- ted soil [J].Agronomy,2022,12 (11):2737. [37]Zhou R,Xu J,Li L,et al.Exploration of the Effects of Cadmi- um Stress on Photosynthesis in Oenanthe javanica Blume )DC [J].Toxics,2024,12(5):307. [38]张艳娜.水位和H对常见的几种湿地挺水植物净化效果的影 响[D].南京:南京信息工程大学,2015. [39]曹明,黄逢万,张娜,等.不同水分生境下铅胁迫对芦苇地 下芽及其输出子株能力的影响[J].西南民族大学学报(自 然科学版),2016,42(02):131-138. |
| [1] | . 河南省3A级以上景区空间分布特征及影响因素[J]. 农业与技术, 2025, 45(19): 89-94. |
| [2] | . 陕北黄土高原植被DVI时空动态变化及其驱动因素[J]. 农业与技术, 2025, 45(18): 73-79. |
| [3] | . 文化共生视域下肇兴侗寨乡土景观多维转译机制研究[J]. 农业与技术, 2025, 45(18): 80-84. |
| [4] | . 黑龙江省东部城市群土地利用变化及生态系统服务价值演变研究[J]. 农业与技术, 2025, 45(18): 85-90. |
| [5] | . 农村生活污水分散式处理模式与技术分析[J]. 农业与技术, 2025, 45(18): 91-95. |
| [6] | . 湖南省县域耕地非粮化空间分异及其影响因素[J]. 农业与技术, 2025, 45(17): 80-84. |
| [7] | . 东北地区景观生态风险评价及驱动力探究[J]. 农业与技术, 2025, 45(17): 85-93. |
| [8] | . 宅基地立体利用模式分析与路径探究[J]. 农业与技术, 2025, 45(16): 80-84. |
| [9] | . 基于PSR模型的川西北生态示范区农业生态系统健康评价[J]. 农业与技术, 2025, 45(16): 85-89. |
| [10] | . 基于HSPF模型的呼兰河流域非点源污染研究[J]. 农业与技术, 2025, 45(16): 90-94. |
| [11] | . 基于贝叶斯网络的内蒙古草原生态文明制度体系构建与评价研究[J]. 农业与技术, 2025, 45(16): 95-100. |
| [12] | . 董志塬农村居民点空间演变与动力机制研究[J]. 农业与技术, 2025, 45(16): 101-107. |
| [13] | . 水体DOM对温室气体排放的作用机制[J]. 农业与技术, 2025, 45(16): 108-112. |
| [14] | . 长株潭市民对长株潭绿心地区游憩服务需求研究[J]. 农业与技术, 2025, 45(16): 113-116. |
| [15] | . 白云鄂博露天稀土矿山资源环境承载力评价研究[J]. 农业与技术, 2025, 45(15): 48-54. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||