农业与技术 ›› 2025, Vol. 45 ›› Issue (16): 108-112.DOI: 10.19754/j.nyyjs.20250830023
• 资源环境 • 上一篇
杜小凡 庄奔 张钰 孙庆晨 杨利伟 谷娇
出版日期:
2025-08-30
发布日期:
2025-08-30
作者简介:
杜小凡(2000-),女,硕士在读。研究方向:水域生态学与水生态修复;通信作者谷娇(1988-),女,博士,副教授。研究
方向:水域生态学及水生态修复。
基金资助:
Online:
2025-08-30
Published:
2025-08-30
摘要: 在全球气候变化的大背景下,温室气体排放量持续攀升。水生生态系统中的溶解性有机物(Dissolved Organic Matter,DOM)是全球最大的有机碳库,在内陆水体生态系统中扮演着至关重要的角色,是影响温室气体 排放的关键因素之一。本文为深入探究水体DOM与温室气体排放的内在联系,系统总结了水体DOM的主要来 源,详细分析了温室气体的生产机制,并着重探讨了水体DOM对C02、CH4、N20等主要温室气体排放的澎响及 作用机制。研究不仅有助于掌握内陆水体生态系统的碳循环过程,还为未来温室气体排放的研究和应对捉供理论 支持。
中图分类号:
. 水体DOM对温室气体排放的作用机制[J]. 农业与技术, 2025, 45(16): 108-112.
[1]李廷强,杨肖蛾。土壤中水溶性有机质及其对重金属化学与生 物行为的影响[J].应用生态学报,2004(06):1083-1087. [2]梁馨蕊.强降雨事件下水源水DOM特性及消毒副产物生成的 研究[D].厦门:厦门理工学院,2023. [3]Leenheer,Jerry A.Comprehensive approach to preparative isolation and fractionation of dissolved organic carbon from natural waters and wastewaters [J].Environmental Science Technology,1981,15 (5):578-587. [4]Carstea E M,Baker A,Savastru R.Comparison of river and canal water dissolved organic matter fluorescence within an urbanised catchment [J].Water and Environment Joural,2014,28 (1): 11-22. [5]王志刚,刘文清,李宏斌,等.三维荧光光谱法分析巢湖 CD0M的空间分布及其来源[J].环境科学学报,2006(02): 275-279. [6]刘朝荣,朱俊羽,李字阳,等。太湖氧化亚氮(N20)排放特 征及潜在驱动因素[J].环境科学,2022,43(08):4118- 4126. [7]张强,兰光飞,杨智杰,等.森林土壤C02、CH,和N20排放 对增温响应的研究进展[J].亚热带资源与环境学报,2025, 20(01):62-71. [8]GuanLin C,Chen Q,Bo G,et al.Unraveling heterogeneity of dissolved organic matter in highly connected natural water bodies at molecular level[J].Water Research,2023,246 2023 ) 120743. [9]Aufdenkampe A K,Mayorga E,Raymond P A,et al.Riverine coupling of biogeochemical cyeles between land,oceans,and at- mosphere [J].Frontiers in Ecology and the Environment,2011,9 (1):53-60. [10]朱俊羽.我国东部湖群C02和CH,气体排放特征及其影响因 素[D].徐州:中国矿业大学,2022. [11]唐千,薛校风,王惠,等.湖泊生态系统产甲烷与甲烷氧化 微生物研究进展[J].湖泊科学,2018,30(03):597-610. [12]黄锦学,熊德成,刘小飞,等.增温对土壤有机碳矿化的影 响研究综述[J].生态学报,2017,37(01):12-24. [13]Updegraff K,Bridgham S D,Pastor J,et al,2001.Response of CO2 and CH,emissions from peatlands to warming and water table manipulation [J].Ecological Applications,11 (2):311. [14]Li L F,Zheng ZZ,Wang W J,et al,Terrestrial N2O emissions and related functional genes under climate change:a global meta- analysis [J].Global Change Biology,2020,26 (2):931- 943. [15]庄奔.博斯腾湖流域溶解性有机物组成及对温室气体排放的 作用机制[D].晋中:太原师范学院,2024. 16]Qi TC,Xiao QT,Miao Y Q,et al.Temporal and spatial varia- tion of carbon dioxide concentraion and its exchange fluxes in Lake Chaohu [J].J Lake Sci,2019,31 (3):766-778. [17]Cole JJ,Prairie Y T,Caraco N F,et al.Plumbing the global carbon cycle:Integrating inland waters into the terrestrial carbon budget [J].Ecosystems,2007,10 (1):172-185. [18]Weyhenmeyer G A,Kosten S,Wallin M B,et al.Significant fraction of CO2 emissions from boreal lakes derived from hydrologic inorganic carbon inputs [J].Nature Geoscience,2015,8 12): 933-936. [19]Dittmar T,Lennartz S T,Buck-Wiese H,et al.Enigmatic per- sistence of dissolved organic matter in the ocean [J].Nature Re- views Earth Environment,2021,2 (8):570-583. [20]朱俊羽,彭凯,李字阳,等.不同水文情景下洪泽湖二氧化 碳排放通量特征及影响因素[J].湖泊科学,2022,34 (04):1347-1358. [21]张柳青,彭凯,杨艳,等.不同水文情景下洪泽湖、骆马湖 有色可溶性有机物生物可利用性特征[J].光谱学与光谱分 析,2020,40(01):85-90. [22]Langenegger T,Vachon D,Donis D,et al.What the bubble knows:lake methane dynamics revealed by sediment gas bubblecomposition [J].Limnology and Oceanography,2019,64 (4): 1526-1544. [23]朱俊羽,彭凯,李字阳,等。南水北调东线枢纽湖泊表层水 体甲烷释放特征及潜在影响因素[J].环境科学,2022,43 (04):1958-1965. [24]Xiao QT,Xu X F,Duan H T,et al.Eutrophic Lake Taihu as a significant CO2 source during 2000-2015 [J].Water Research, 2020,170. [25]Zhang W S,Li H P,Xiao Q T,et al.Urban rivers are hotspots of riverine greenhouse gas (N20,CH4,CO2)emissions in the mixed landscape chaohu lake basin J].Water Research, 2021,189. [26]Zhang Y L,Wu Z,Liu M L,et al.Dissolved oxygen stratifica- tion and response to thermal structure and long-term climate change in a large and deep subtropical reservoir Lake Qiandao- hu,China)[J].Water Research,2015,75:249-258. [27]Qiu Q Y,Wu L F,Ouyang Z,et al.Effects of plant-derived dissolved organic matter (DOM)on soil CO2 and N2O emissions and soil carbon and nitrogen sequestrations [J].Applied Soil E. col0gy,2015,96:122-130. [28]张柳青,石玉,李元鹏,等.不同水文情景下高邮湖、南四 湖和东平湖有色可溶性有机物的生物可利用性特征[J].环 境科学,2020,41(05):2149-2157. [29]Shao T T,Wang T.Effects of land use on the characteristics and composition of fluvial chromophoric dissolved organic matter CDOM)in the Yiluo River watershed,China [J].Ecological Indicators,2020,114. [30]Nedin N P,Beegan C,Feit A,et al.Colored Dissolved Organic Matter (CDOM)as a tracer of effluent plumes in the coastal o- cean [J].Regional Studies in Marine Science,2020,35. |
[1] | . 宅基地立体利用模式分析与路径探究[J]. 农业与技术, 2025, 45(16): 80-84. |
[2] | . 基于PSR模型的川西北生态示范区农业生态系统健康评价[J]. 农业与技术, 2025, 45(16): 85-89. |
[3] | . 基于HSPF模型的呼兰河流域非点源污染研究[J]. 农业与技术, 2025, 45(16): 90-94. |
[4] | . 基于贝叶斯网络的内蒙古草原生态文明制度体系构建与评价研究[J]. 农业与技术, 2025, 45(16): 95-100. |
[5] | . 董志塬农村居民点空间演变与动力机制研究[J]. 农业与技术, 2025, 45(16): 101-107. |
[6] | . 白云鄂博露天稀土矿山资源环境承载力评价研究[J]. 农业与技术, 2025, 45(15): 48-54. |
[7] | . 贵州省台江县旅游碳足迹测算与碳减排路径研究[J]. 农业与技术, 2025, 45(15): 66-69. |
[8] | . 农业碳排放与经济增长的动态关系研究[J]. 农业与技术, 2025, 45(14): 62-66. |
[9] | . 天津市耕地适度经营规模测算及其实现路径研究[J]. 农业与技术, 2025, 45(14): 67-72. |
[10] | . 中国耕地非耕利用的时空演变及其影响因素[J]. 农业与技术, 2025, 45(14): 73-79. |
[11] | . 秸秆基料化驱动草菇栽培的生态循环模式构建[J]. 农业与技术, 2025, 45(14): 80-84. |
[12] | . 基于混合特征选择的面向对象土地利用分类[J]. 农业与技术, 2025, 45(14): 85-88. |
[13] | . 黑龙江省产水量时空演变及其影响因素[J]. 农业与技术, 2025, 45(14): 89-95. |
[14] | . 快速城镇化背景下云南省坝区县耕地连片化演变规律[J]. 农业与技术, 2025, 45(13): 66-70. |
[15] | . 基于VEST模型的哈尔滨市碳储量时空分析[J]. 农业与技术, 2025, 45(13): 71-76. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||